S -2
P
P

NASA CONTRACTOR REPORT 187450
Strategies for Concurrent Processing
of Complex Algorithms in Data

Driven Architectures

Sukhamoy Som, John W. Stoughton,
and Roland R. Mielke

Old Dominion University

Norfolk, Virginia

Grant NAG1-683

OCTOBER 1990 -
(NASA-CR-107450) STRATEGIES FGP CONCURRENT NO1-20395
PRUCESSING OF COMPLEX ALGORTTHMS TN GATA
ORIVCN ARCHITFLTURES Final Report, May 1988

ynclas

- Aug. 1989 (ula gominion Univ.) 178 p

cecL 09C G3/33 000346l

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

PAGE
IIST OF TABLES +eevevscsssancssacss T . iii
LIST OF FIGURES .cvvevecccesssensnces cesenssessnsens iv
LIST OF SYMBOIS tcvvessvsansscasccesncsacsssnssvsns ceeeseseess Vi1
EXECUTIVE OVERVIEW .cccccecccccncscnseannes recesvsesesvanaans X1
CHAPTER

1 INTRODUCTION «cccceacssssssnsosscassessasscsasnssnosns . 1
1.0 Preface sereseserns trerssssesersesnrenee eeses 1

1.1 Background tsessresesacsens ceecassnnasaes 1

1.2 Problem Representation by the ATAMM model..... sess B

1.3 Objectives and Organization of Dissertation....... 13

2 PERFORMANCE MODEL .vcvvecsevrossassnsncsssnsocosavenanssas 17
2.0 Introductioncveevvenens cerennens cesseanans . 17

2.1 Performance MEASUreS ...essccersssccssassenssncanss 17

2.2 Marked Graph Characteristicscevceveee. vee. 20

2.3 Graph Theoretic Performance Boundscc. 30

2.4 Resource RequirementS.....ceecrvercsscccscasenaneas 36

2.5 SUMAYY «vevvsecsncnes cereenann Ceereireeeearenes 53

3. AIGORITHM TRANSFORMATION ..ccecevcescsnssoenscsesnanvasncs 55
3.0 Introduction heeseestsseresassarerosratsrnns 55

3.1 Algorithm Transformation Guidelines 55

3.2 Performance Improvements by Transformation........ 62

3.3 Implementation of Periodicity by Transformation... 72

3.4 Structural Changes in Algorithm by Transformation. 80

4.0 Introduction...veveerierioineennerersnrenraaonnnas
4.1 Characteristics of Operating Point...............
4.2 Operating Point Design....cceveveerevnsesnnacanns

4.3 Test ResultsS....cceeeeeencen ceseresvrEnas csensnes

5. CONCIUSION. ¢ueveevaseresaseasssccssneasnncsssasscsnnsens

ii

93

95

95

TABLE

4.1

4.2

LIST OF TABLES

Comparison of Results for Test 1ccevevecnses.

Comparison of Results for Test 2

iii

sesvsassvsBsE RSB

FIGURE

1.1

1.3

1.4

2.9

2.10

3.1

3.2

3.3

3.4

LIST OF FIGURES

Algorithm marked graph for discrete
system equation............. terrssrescssaancsne

ATAMM node marked graph model.....eeeencenonnee

ATAMM computational marked graph
model for discrete system equation.............

ATAMM model COmPONeNntS....cvcsvarsereesssonanns
An algorithm for flight simulation plan..... -
Example algorithm marked graph....c.eceeeecenans
Example of node and process circuitS...........
Computational marked graph for the AMG.........

Example of recursion and parallel
path CircUitS. . cini it i eiii i iirernnrnnneanens

Mcdified algorithm marked graph
fOr FIQUIe 1.lieveieieecernsocsosososnacnnnnnss

Algorithm marked graph for
illustration of SGP AND SRE..:veeeeeneenananens

Total graph play and total resource
envelope for TBO = 2........ Peeseecsacsanrennens

Single resource envelope and
total resource envelope for TBO = 3.vveecvnnnn.

Transformed algorithm marked graph
in Application I....eveeveevennenncnnnnrenns ces

Computational marked graph
for the transformed AMG. .. cveveeennsneeneennons

AMG for illustration of Application 2..........

SRE and TRE for TBO = 2..ccecerecncararancncens

iv

PAGE

12

14

15

21

23

26

28

29

32

42

43

50

52

60

61

68

69

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.17

4.1

4.2(a)

4.2(b)

Transformed AMG for Figure 3.3ceevns ceees 70

For the AMG transformed by control place
1, SRE and TRE for TBO = 2...cveevveeres 71

For the transformed AMG with all control
places, SRE and TRE for TBO = 2......... 73

Injection control by Application 3.....ceeevee- 75

Example AMG for illustration of

Application 4 ...c.ceveeens cessesenne cveesanees 78
SGP and TGP for TBO = 2.i.csrencossassenncsanss 79
Transformed AMG and total graph play

for TBO = 3.ceevevsccsss eeessesssatssevesannuns 81
AMG A, and transformed AMG Aje.eereecscrceranns 83
Algorithm 1, Algorithm 2, and Algorithms 1

and 2 are combined by dummy transitions........ 84
AMG for the linear time invariant system 85

Transformed AMG for the linear
time invariant systemcccciceiiiiiiaiaaen 88

An AMG with a large transition T and T is
decomposed in N parallel transitions........... 91

AMG before decomposition of B and B is
AecoMPOSEd. s s eveereessssassscsassssnnanasscsses 94

AOP characteristics under
specific transformations cavsies ceneesess 102

The strategies for AOP design under

resource constraintS...coeeveerieneirisisaeenns 106
SGP and TGP for TBO = 2.ieeeessssssacanonnss oo 107
TRE for TBO = 3 in Step 4 and

TRE for TBO = 4 in Step Geveverevcrireersnncnes 109
SGP and TGP for TBO = 2........ Cesiraesessennns 110
Transformed AMG for Steps 5 and 6 ccevecesneranns 112

ATAMM operating points for
the example algorithm marked graph............. 113

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23
4.24

4.25

4.26

4.27

The testbed ATAMM data flow architecture.......

AMG for Test 1 ard transformed

AMG for Test 1..

L I N A R A R R

Simulation results for the AMG in Test 1.......

Simulation results for the

transformed AMG in Test 1

Experimental results for the AMG in Test 1....

Experimental results for the

transformed AMG in Test 1

AMG for Test 2 and transformed AMG
for Test 2...cieeeresecsrsccncronsconsncnansnns

Similation results for the AMG in Test 2.......

Simulation results for

the transformed AMG in Test 2..

Experimental results for
the AMG inTest 2....ccvvveennes ersresseanans

Experimental results for the

transformed AMG in Test 2
For Test 3, AMG and SRE

Simulation results for AOP of

Step 3 in Test 3

Simulation results for AOP of
Strategy A in Test 3....

AMG for Test 4 and SRE for the

AMG Of Test 4..vieereeitoatoennsannnesnsnsnscnsness

For the transformed AMG, SRE and SGP...eeeevees

TGP for transformed AMG

Simulation results for AOP of

Step 3 in Test 4

Simulation results for AOP of
Strategy A in Test 4

Simulation results for AOP of

Step 3 in Test 5

vi

115

117

120

121

122

123

125

128

129

130

131

132

134

135

136

138

139

140

141

142

4,28

4.29

4.30

Simulation results for AOP of
Strategy A inTest 5 Ceeectsenneneenan 143

Simulation results for AOP of
Strategy B in Test 5 ..ocvverannennceenranns eee 144

Simulation results for AOP of
Strategy C In Test 5 ..ocvvennieeninannccncnenns 145

vii

SYMBOL

AOP

ATAMM

cC

DR

GIM

SGP

1E

IF

M(C;)

LIST OF SYMBOLS
DESCRIPTION

ATAMM Operating Point
Algorithm Marked Graph
Algorithm To Architecture Mapping Model
Section Number of SGP and Data Packet Number
i™ pirected circuit
Computational Marked Graph
Computing Capacity
Computing Effort
Data Ready
Functional Unit
An Algorithm Marked Graph
A Computational Marked Graph
Modified Algorithm Marked Graph for G
Global Memory
Single Graph Play
Graph Manager
Input Buffer Empty
Tnput Buffer Full
Modified Algorithm Marked Graph
Number of Tokens in Circuit i

Node Marked Graph

viii

OE Output Buffer Empty

OF Output Buffer Full

P Process Time

P4 Place j

p; - i*™" pirected Path

PC Process Complete

PR Process Ready

SRE Single Resource Envelope

r Read Time

R Number of Computing Resources
Rpax Largest Peak Value of TRE for any TBI > TBOjpg
Ruin Peak Value of SRE

RU Resource Utilization

tj Transition j

T(C;) Total Transition Times in C;
T(P;) Total Transition Times in P;
TBL Input Data Injection Interval
TBO Time Between Outputs

TBOOp TBO at the Operating Point
TBOp1 R Absolute Lower Bound for TBO
TBOr g Lower Bound for TBO

TBIO Time Between Input and Output
TBIOa1R Absolute Lower Bound for TBIO
TBIOr Lower Bound for TBIO

TGP Total Graph Play

TRE Total Resource Envelope

TBC Total Backward Computation

ix

Total Computation

Total Computing Effort

Total Forward Computation
Total Forward Computing Effort
Task Time

Absolute lower bound for TT
Lower bound for TT

Write Time

EXECUTIVE OVERVIEW

The purpose of this report is to document research to develop
strategies for concurrent processing of complex algorithms in data
driven architectures performed under Grant NAG1-683 during the period
May 1988 to August 1989. In this overview, the problem damain is
described, the motivation for this research is explained, and é
summary of research activities are presented. The detailed
description of the investigation is taken from the doctoral
dissertation by Dr. Sukhamoy Som entitled "Performance Modeling and
Enhancement for the ATAMM Data Flow Architecture".

During earlier grant periods, a computational model called the
Algorithm To Architecture Mapping Model (ATAMM) was formulated for
mapping large-grain, decision-free algorithms to a multicomputer data
flow architecture. Major aéplications are expected fo be real-time
implementation of control and signal processing algorithms where
performance is required to be highly predictable and fault tolerant.
Of interest is the periodic execution of algorithms. For our
purposes, an algorithm is expressed as a directed graph where vertices
(nodes) represent algorithm operations and edges represent data sets
or signals. Iarge-grain refers to the assumption that the time
required to perform algorithm operations is large compared to the time
required to move data from one node to another. Decision-free refers
to the absence of data dependent paths in the algorithm graph

xi

representation. The architecture is assumed to consist of two to
twenty functional units or resources each having a capability of
processing, communication, and memory. The resources share a common
global memory which is centralized or distributed. The coordination
of resources in relation to data and control flow is directed by a
graph manager. The graph manager also is centralized or distributed.
Assignment of a functional unit to a specific algorithm node is made
by the graph manager according to ATAMM rules and a priority ordering
of algorithm nodes. All assignments are non-preemptive for minimum
communication cost. In a specific hardware setting, the graph
manager, global memory, and functional unit activities together form
the ATAMM Multicomputef Operating System or AMOS.

The ATAMM model is important because it specifies a criteria for
a multicomputer operating system to achieve predictable and highly
fault tolerant performance, and it creates a platform for
investigating different algorithm decompositions and implementation
strategies in a hardware independent context. In earlier reports, the
use of the ATAMM model is described for determining analytically
performance bounds and developing an operating strategy for optimm
time performance. In addition, the construction of an ATAMM defined
data flow architecture and development of simulation and analysis
tools are reported. During the present grant period, research is
carried out for performance modeling and performance enhancement for
the ATAMM data flow architecture. 1In order to have a predictable
performance, it is necessary that assignment of algorithm nodes to
functional units be as much priority independent as possible. This is

done to avoid the priority inversion problem. FEven for small run-time

Xil

variations of communication delays and execution time variations, a
low priority algorithm node may be enabled before a high priority
algorithm node. As the assignment is non-preemptive, this may
completely change the graph execution pattern and resoﬁrce
requirements. In order to overcome this problem, it is suggested that
the operating system (AMOS) transform the algorithm graph and control
input data injection interval so that a functional unit always is
available for every enabled algorithm node. In other words, even if
priority inversion changes the order of execution of algorithm nodes,
graph execution patterns and resource reguirements will not be changed
drastically. Two performance measures, TBIO and TBO, are defined for
periodic processing of algorithms. TBIO is an indicator of computing
speed for an algorithm. TBO is a measure of the time interval between
algorithm outputs, and the inverse of TBO indicates throughput. The
time performance (TBIO, TBO) and the number of required resources
define an operating point for AMOS. If enough functional units are
available, optimum TBIO and TBO can be achieved. However, if a
limited number of resources is available, one must increase either TBO
or TBIO, or a combination of both. Two key methods for shifting the
operating point are control of the input injection interval and
transformation of the algorithm graph. Transformation of the
algorithm graph is achieved by adding dummy nodes (transitions) and
control edges (places) as described below. A dummy node is an
algorithm node which implements an identity operation and requires
zero time. It is used as a buffer to provide additional storage space
for the output of an algorithm node. A dummy node is a pure memory

operation and does not require a resource. A control edge is an

xiii

algorithm edge which imposes a precedence relation among two algorithm
nodes but does not imply data dependency. This type of edge is used
to delay the execution of a node. Thus, predictable performance is
achievable even if the number of functional units decreases to 1. An
ATAMM simulator and experiments on a three resource testbed provide
verification of performance modeling and graph transformation methods.
The use of brand names in this report is for completeness, and

does not indicate NASA endorsement.

xiv

CHAPTER ONE

INTRODUCTION
1.0 Preface

Algorithm To Architecture Mapping Model (ATAMM) is a new graph

theoretic model from which the rules for data and control flow in a
homogeneous, multicomputer, data flow architectures may be defined
[1, 2]. The subject of this dissertation is the investigation of
concurrent processing in such an ATAMM defined architecture for
large-grain, decision-free algorithms. Performance modeling,
performance enhancement, and the development of Qperating strategies
for periodic execution of such algorithms are the key research
objectives. Chapter One is an introduction of ATAMM and a discussion
of the motivation behind the research. Background for the ATAMM model
and this research is presented in Section 1.1. The computational
problem representation by the ATAMM model is presented in Section
1.2. The objectives and organization of this dissertation are

described in Section 1.3.

1.1 Background

The principles of camputer architecture design historically have
been based upon the von Neumann organization [3]. These principles
have led to architectures consisting of a single computer in which low
level machine language instructions perform simple operations on

elementary operands, and centralized, sequential control of

computation is employed. Despite the fact that electronic components
are becoming increasingly faster, the desired computer performance has
always been much more than that which is obtainable with the von
Neumann organization. Advances in the solid state technology alone
are nct expected to be enocugh to produce computers to meet the
computational needs of the future. There is a growing agreement that
the next (fifth) generation of computers will be based upon non-von
Neumann structures.

Recently, a number of new computer architectures have been
proposed from which a number of computer systems have been built [3].
The need for new computer architectures has been motivated mainly by
three objectives. First, there is the desire to increase computer
performance through the use of concurrency. Second, there is the
desire to more fully exploit very large scale integration (VISI) in
the design of computers. Third, there is interest in new programming
methods which facilitate the mapping of algorithms onto
architectures. These ideas suggest a decentralized computer
architecture in which a number of independent computers are to work
together. These independent computers, each having a capability for
processing, communication, and memory, can be as large as a
geographically distributed mainframe computer or as small as
microcomputers on a single VISI chip. Unfortunately, strategies for
interconnecting and programming such architectures based upon von
Neumann principles have not evolved. It appears that von Neumann
organization principles are not adequate to address the complex issues

of scheduling, coordination, and communication.

Strategies for control of computationé on decentralized computer
architectures can be classified broadly as control flow, demand
driven, and data driven. In control flow computers, explicit flows of
control cause the execution of instructions. In demand driven
architectures, the execution of operatioﬁs are triggered by the
requirements of outputs or results. In data driven architectures
(also known as data flow computers), the availability of operards
trigger the execution of operations. Data flow architectures are the
primary interest of this research because of their suitability for
concurrent processing of complex algorithms.

A useful mathematical tool for modeling execution of complex
algorithms on a data flow decentralized architecture is the Petri
net. DPetri nets were first developed in 1962 by Carl Petri (4], and
later were identified as a useful analysis tool in the work of Holt
and Commoner [5]). A comprehensive treatment of Petri nets is
presented in [6]. One problem with the Petri net model is that it
tends to be too complicated to analyze. An important subclass of
Petri net is the marked graph where each place has exactly one
incoming and one outgoing arc. Marked graphs can be used to model the
processing of decision-free algorithms [7]. Properties such as
liveness, safeness, and reachability can be achieved for marked graph
models [6]. Procedures also exist for expanding and reducing marked
graphs while preserving these properties [8]. These graph features
are suitable for modeling the succession of single events such as data
and status conditions. In this dissertation, the marked graph is used

as a modeling tool for data driven computations.

The data flow concept has already attracted the attention of a great
many researchers, and a number of data flow computers have been built
[9]. However, only a few researchers have tried to develop a
theoretical model for evaluating computation in a data driven
architecture [10]. These models do not appear to be adequate to
address the complex issues of scheduling, coordination, and
commmnication. Therefore, the performance of algorithms is often
unpredictable and hardware dependent in these data flow computers.
There is a need for a simple, but effective, model for data
driven computations in order to investigate the relative merits of
different algorithm decompositions and implementation strategies in a
hardware independent context. Ongoing research at 0ld Dominion
University has led to the development of a new marked graph model for
describing data and control flow associated with the execution of
algorithms in data flow architectures [2]. The model is identified by
the acronym ATAMM which represents Algorithm To Architecture Mapping
Model [11]. Specifications derived from the model lead directly to
the description of a data flow architecture and will be called the
ATAMM data flow architecture henceforth. The availability of the
ATAMM model is important for at least three reasons. First, it
provides a context in which to investigate algorithm decomposition
strategies without the need to specify a specific ATAMM data flow
architecture. Second, the model identifies the data flow and control
dialogue required of any ATAMM data flow architecture which implements
the algorithm. Third, the model provides a basis for analytically
calculating performance bounds and developing a methodology for

improvement in performance.

The problem domain addressed by the ATAMM data flow architecture
and this research consists of decision-free, large-grain, complex
algorithms which are assumed to be executed periodically in a
multicomputer envirorment. The algorithms are assumed to require
large computations which would include such computations as matrix
addition, multiplication, etc. The anticipated multicomputer
enviromment is assumed to consist of two to twenty identical computers
or functional units each having a capability of processing,
communication and memory. The primary reason for such assumptions is
the objective of implementing control and signal processing algorithms
in next generation multicomputer architectures for real time
applications on future spacecraft. The granularity level of the
algorithm decomposition is kept high to avoid communication
bottlenecks as observed in many fine-grain data flow architectures
[12]. The range of functional units is suggested due to the
large-grained aspect of the algorithm decomposition. Of interest is
the definition of a performance model so that the performance of the
algorithms can be evaluated and improved. Also an operating procedure
is needed for obtaining predictable performance with respect to

available computing elements.

1.2 Problem Representation by the ATAMM Model

The ATAMM model consists of a set of Petri net marked graphs
which incorporate general specifications of communication and
processing associated with each computational event in a data flow
architecture. In this section, the computational problem is

represented by the ATAMM model. First of all a detailed description

of the problem context is stated. This is followed by the definition
of the ATAMM model consisting of the algorithm marked graph, the node
marked graph, and the computational marked graph. Some familiarity
with Petri nets [6] and marked graphs [13] is assumed.

A problem description normally results in the definition of a
function given by the triple (X, Y, F), where X represents the set of
admissible inputs, Y the set of admissible outputs, and F: X -> Y the
rule of correspondence which unambiguously assigns exactly one element
from Y to each element of X. Associated with a computational problem
is one or more algorithms. An algorithm is an explicit mathematical
statement, expressed as an ordered set of primitive operations, which
explains how to implement the rule of correspondence F. A primitive
operation is a complex computation. Matrix multiplication and
addition are examples of primitive operations. In general, a given
problem can be decomposed by several different primitive operator
sets. Also, for a given primitive operator set, there are often
different ordering of primitive operations which can be specified to
carry out the problem. Of special interest are algorithm
decompositions in which two or more primitive operations can be
performed concurrently. For such decompositions, the potential exists
for decreasing the computational time required to solve the problem by
increasing the computational resources which implement the primitive
operations.

The hardware enviromment for executing the decomposed algorithms
is assumed to consist of R identical computers or functional units
(FUN's), where R has a value in the range of two to twenty. These

computers or functional units are also denoted by the terms

"computing element" or "resource". Each functional unit is a
processor having local memory for program storage and temporary input
and output data containers. Each functional unit can execute any
algorithm primitive operation. The functional units share a common
global memory (GIM), which may be either centralized or distributed.
The coordination of functional units in relation to data and control
flow is directed by the graph manager (GM). The graph manager also
may be centralized or distributed. Output created by the completion
of a primitive operation is placed into global memory only after the
output data containers have been emptied. That is, outputs must be
consumed as inputs to successor primitive operations before allowing
new data to fill the output locations. Assigmment of a functional
unit to a specific algorithm primitive operation is made by the graph
manager only when all inputs required by the operation are available
in global memory and a functional unit is available.

An algorithm marked graph (AMG) is a marked graph which
represents a specific algorithm decomposition. Transitions and places
are represented as vertices and directed edges respectively. Vertices
of the algorithm marked graph are in a one-to-one correspondence with
each occurrence of a primitive operation. The transition times
represent the computaticn times of the respective primitive
operations. The algorithm marked graph contains an edge (i, 3j)
directed from vertex i to vertex j if the output of vertex i is an
input for vertex j. Edge (i, J) is marked with a token if an output
from vertex i is available as an input to vertex j. By the rules of
the marked graph, the computation of a vertex can only be done when

all the incoming edges have a token on them. When constructing an

algorithm marked graph, vertices (transitions) are displayed as
circles, and edges (places) are displayed as directed line segments
connecting appropriate vertices. The presence of a token on an edge
is indicated by a solid dot placed on the edge. Source transitions
and sink transitions for input and output signals are represented as
squares. Sources for constants are not usually included in the
algorithm marked graph; however, triangles are used for this purpose
when necessary.

To illustrate the construction of an algorithm marked graph,
consider the problem of computing the output of a discrete linear,
time invariant system given a sequence of inputs to the system. Let

the system be described by the state equation

x(k) = Ax(k-1) + Bu(k)

and the output ecquation

y(k) = Cx(k),

where x is a p-vector, u is an m-vector, and y is an r-vector. The
primitive operations are defined as matrix multiplication and vector
addition, and the natural algorithm decomposition resulting from the
state equation description is selected. The algorithm marked graph
for this decomposed algorithm is shown in Figure 1.1. The initial
marking indicates that initial condition data are available.

The algorithm marked graph is a useful tool for representing

decomposed algorithms and for displaying data flow within an

-uoyonbe wejsis
@30J08ip 10} ydoub pexsow wyuobly -°| einby4

(dov

10

algorithm. However, the algorithm marked graph does not display
procedures that a computing structure must manifest in order to
perform the computing task. In addition, the issues of control, time
performance, and resource management are not apparent in this graph.
These important aspects of concurrent processing are included in the
ATAMM model through the definition of two additional graphs. The node
marked graph (NMG) is defined to model the execution of a primitive
operation. The computational marked graph (CMG), cobtained from the
AMG and the NMG by a set of construction rules, integrates both the
algorithm requirements and the computing environment requirements into
a comprehensive graph model. These additional marked graphs are
defined below.

The node marked graph (NMG) is a Petri net representation of the
performance of a primitive operation by a functional unit. Three
primary activities: reading (r) of input data from global memory,
processing (p) of input data to compute output data, and writing (w)
of output data to global memory, are represented as transitions
(vertices) in the NMG. Data and control flow paths are represented as
places (edges), and the presence of signals is notated by tokens
marking appropriate edges. The conditions for firing the process and
write transitions of the NMG are as defined for a general Petri net,
while the read transition has one additional condition for firing. 1In
addition to having a token present on each incoming signal edge, a
functional unit must be available for assignment to the primitive
operation before the read node can fire. Once assigned, the
functional unit is used to implement the read, process, and write

operations before being returned to a queue of available functional

units. The initial marking for an NMG consists of a single token in
the Process Ready place. The NMG model in shown in Figure 1.2.

A computational marked graph ((MG) is constructed from the AMG
and the NMG by the following rules:

1) Source and sink nodes in the algorithm marked graph are

represented by source and sink nodes in the O4G.

2) Nodes corresponding to primitive operations in the algorithm
marked graph are represented by NMG's in the O4G.

3) Edges in the algorithm marked graph are represented by edge
pairs, one forward directed for data flow and one backward
directed for control flow, in the OMG.

The forward directed edge goes from predecessor write transition
to successor read or sink transition. This forward edge is also shown
as part of the NMG where it is the OF and IF edge of the predecessor
and successor respectively. The backward directed edge goes from
successor read transition to predecessor read or source transition.
This backward edge is also shown as part of the NMG where it is OE and
IE edge of predecessor and successor respectively. The initial
marking for the edge pair consists of a single token in the forward
directed place if data are available, or a single token in the
backward directed place if data are not available.

The play of the (MG proceeds according to the following graph
rules:

1) A node is enabled when all incoming edges are marked with a

token. An enabled node fires by encumbering one token from
each incoming edge, delaying for some specified transition

time, and then depositing one token on each outgoing edge.

11

Figure 1.2.

12

Ot

IF

IE

DR
PC
PR
OE
OF

Input Buffer Full
Input Buffer Empty
Data Read

Process Complete
Process Ready
Output Buffer Empty
Output Buffer Full

OF

ATAMM node marked graph model.

13

2) A source node and a sink node fire when enabled without

regard for the availability of a functional unit.

3) A primitive operation is initiated when the read node of an

NMG is enabled and a functional unit is available for
assignment to the NMG. A functional unit remains assigned to
an NMG until completion of the firing of the write node of
the NMG.

In order to illustrate the construction of a computational marked
graph, the OMG corresponding to the algorithm marked graph of Figure
1.1 is shown in Figqure 1.3. The computational marked graph is useful
because it clearly displays the data and control flow which must occur
in any hardware implementation of the algorithm, and because it
provides a hardware independent context in which to evaluate algorithm
performance.

The complete ATAMM model consists of the algorithm marked graph,
the node marked graph, and the computational marked graph. A
pictorial display of this model is shown in Figure 1.4. ATAMM model

characteristics are described in detail in the Appendix.

1.3 Objectives and Organization of Dissertation.

The behavior and performance for periodic execution of complex
algorithms in the ATAMM data flow architecture is investigated in this
dissertation. The problem domain consists of large—grain,
decision-free algorithms. The major research cbjectives are
threefold. First, a performance model is established. Second, rules
for transformation of algorithms for performance enhancement and

reduction of computing element requirements are identified. Third,

14

"uolpnbas walsAs

9}240sIp 40} |9pow ydpub paxiow jpuonpINdwod WAVLY ¢ 24nbig

()*v

$$920.(
pPOaY

S ovam

/ Computing
environment

Algorithm
directed graph

Petri net
theory

Node marked
graph

Algorithm
marked graph

Computational
marked graph

Figure 1.4. ATAMM model components.

15

16

operating strategies are developed for optimum time performance and
for sub—optimm time performance under limited availability of
computing elements.

The dissertation is organized in five chapters and an appendix.
In the Appendix ATAMM model characteristics, some of which are used in
this dissertation, are described in detail. Definitions of the
computing enviromment, performance measures, and evaluation of
performance bounds and resource requirements are presented in Chapter
Two. In Chapter Three, algorithm transformations for improving
performance, and methods for enforcing desired resource envelope and
inducing structural changes in algorithm marked graphs are described.
The definition and characterization of an operating point design
procedure, and the results of simulations are presented in Chapter
Four. Finally, conclusions from this research and future research

topics are presented in Chapter Five.

CHAPTER TWO
PERFORMANCE MODEL

2.0 Introduction

A performance model for the ATAMM (Algorithm To Architecture
Mapping Model) data flow architecture is described in this chapter.
The objective is to determine computing speed, throughput capacity and
resource (computing element) need for implementing decision-free
large-grain algorithms on the ATAMM data flow architecture. The
computing enviromment and performance measures are defined in Section
2.1. In Section 2.2, characteristics of marked graphs, which are
needed to establish the performance model, are described. Graph
theoretic lower bounds for the time performance of algorithm marked
graphs operated in the ATAMM data flow architecture are established in
Section 2.3. Resource needs are predicted and performance bounds in
the presence of resource limitations are evaluated in Section 2.4. A

summary of the chapter is presented in Section 2.5.

2.1 Performance Measures

The importance of the ATAMM model is that it provides a hardware
independent context in which to investigate the performance of
decomposed algorithms as long as the architecture obeys the rules of
the AMG. It is assumed that a decomposed algorithm is implemented in

a ATAMM data flow architecture containing R identical resources or

17

18

functional units. Each functional unit is capable of performing any
of the primitive operations whose sequence defines the decomposition.
The tokens on the Q4G indicate the data and control flow that must
occur in any hardware implementation of the algorithm. Consider a QG
in some initial marking. A task is defined when, for a given input
data packet, the (MG proceeds through all its marking and returns to
its initial marking. Equivalently, a task is the sequence of
computations defined by the AMG operations on a given input data set.
Task output occurs when a corresponding ocutput data token is deposited
at the output sink node. It should be noted that task output and task
completion do not always coincide. In many iterative signal
processing algorithms, computations are required to generate initial
conditions for the next iteration which often occur after the output
has been calculated. For control and signal processing applications,
tasks are repeated periodically with new input data sets (data
packets). New tasks are begun when new data sets are injected as
input tokens from the input source node at a finite interval of time
so that computing time and resource needs are identical for all data
sets. Of interest is the relationship of concurrency to performance
for repeated inputs.

Computational concurrency occurs in two ways. First, several
transitions of the task may be performed on an individual data set
simultaneously. This type of concurrency is termed parallel
concurrency because it is the result of inherent parallelism in the
algorithm. Parallel concurrency has a direct effect on task computing

speed. It is limited by the number of transitions that can

19

be performed simultaneously for the given task and by the number of
functional units available to perform the transitions. Second,
transitions of the task belonging to different data sets can be
performed simultaneously in the computing system. This type of
concurrency is referred to as pipeline concurrency because the task is
repeated for successive data sets, like a pipeline. This type of
concurrency has a direct effect on throughput. Throughput is limited
by the capacity of the graph to accommodate additional data sets and
by the number of functional units available to jimplement the algorithm
periodically.

Three performance measures, TBIO, TT, and TBO, are nowW defined
for concurrent processing of complex algorithms in ATAMM data flow
architectures. TBIO and TT are indicators of camputing speed for a
task and thus reflect the degree of parallel concurrency. TBO is a
measure of time interval between task outputs. The inverse of TBO
indicates throughput, and thus reflects the degree of pipeline
concurrency.

Definition 2.1: TBIO. The performance measure TBIO (time between

input and output) is the elapsed computing time between a task input
and the corresponding task output.

Definition 2.2: TT. The performance measure TT (task time) is the

elapsed computing time between a task input and the completion of all
computation associated with that task input.

Definition 2.3: TBO. The performance measure TBO (time between

outputs) is the elapsed computing time between successive task outputs
when the graph is operating periodically at steady state.
To illustrate, an algorithm marked graph for an aircraft flight

simulation is shown in Figure 2.1. Sy is the input source

20

representing flight plan data. S5 is the output sink representing
moving map and flight instruments data. Transitions of the graph
represent activities. Places represent data dependency or precedence
relation. Tokens on places are initial tokens representing initial
condition data. As an example, transition 3 represents inertial
navigation computation and requires ten time units for processing.
Time units associated with transitions are relative and are measured
with respect to a reference. Transition 7 (zero processing time) is
used to combine outputs of the coordinate transform computation
(moving map) and the auto-pilot computation (control for flight
instruments). TBIO is the time to produce the outputs in Sy for
flight plan data. TT is the time to finish all processing for a task
input. TBIO and TT need not be the same for all problems although
they are related. TBO is the time between arrival of successive
output tokens in the output data sink when the algorithm is executed

periodically at steady state.

2.2 Marked Graph Characteristics

Marked graphs, a class of Petri nets, are used as a device for
expressing the ATAMM. A marked graph is viewed as a directed graph
where the vertices are the transitions and the edges are directed
places. In this section, concept of path and circuit for the marked
graph is developed. Only directed paths and circuits are of interest
to this dissertation. If not mentioned, a path or a circuit of a
marked graph should always be understood to be a directed path or a

directed circuit respectively. Some properties of the marked graph

21

S

upjd uonojnwis by 10§ wyuoblp uy °L°Z @.nb14

spun ewy 01 (2

Ol speeu \

Z UoniIsubJ}

uoljisubi}
yndinQ
L
/ 0
gjuewInNJ}sul

- wybwy ®
dow bujropy

ol

ol

¢

I

ojidoyny

sOJwou

Ol (g

13061A0uU
jojjseu]

DJo4IY

¥
l

jsuDs}
@}DUpJ00)

G)i
0}DN}OY
JOSUeS

uoyd
b4

which are needed to establish a performance model are stated. Also,
circuits of the (MG are classified. Iet t; and p; dencte

transition i and place i respectively.

Definjtion 2.4: Directed Path. A directed path in a marked graph is
a finite alternmating sequence of distinct transitions and distinct
directed places with the following property. The sequence begins and
ends with transitions and every place originates from the immediate
predecessor transition and ends on the immediate successor transition

in that sequence.

To illustrate, the sequence Sp, Py, t1, Py, ty, P3, Y5, Py, and Sy

is a directed path in Figure 1.1. But the sequence t,, p,, t,5, Pg,
t4, Ps, ty, P3, and ty is not a directed path in Figure 1.1 as
transition 2 is repeated twice in that sequence.

Definition 2.5: Directed Circuit. A directed circuit in a marked

graph is the same as a directed path except that beginning and end
transitions are the same in a directed circuit.

To illustrate, the sequence t,, pg, t;, P5 and t, is a directed
circuit in Figure 1.1.

Definition 2.6: Parallel Paths. Parallel paths are directed paths
which have identical beginning and ending transitions; however, all
other transitions and places on all directed paths are distinct.

In Figure 2.2, the sequence t,, py, t,, P3: t3, Py, by, P5, and
tg and the sequence ty, Pgr g ps; and tg are parallel paths.
Definition 2.7: Group Of Paths. Group of paths are a finite number
of directed paths from a marked graph.

To illustrate, the sequences t,, p;, ty, Py, t4 and ty, pg, tg,

Pg, tg form a group of paths in Figure 2.2.

22

23

-ydoisb pexsow wyuobp ejdwoxy Z°Z e4nby4

/ UOISUDJ}

ewyy uopisupsj— &

24

Definition 2.8: Path Iength. The length of a directed path in a

marked graph is defined to be the summation of all the times for
transitions in that directed path.

Definition 2.9: Circuit Iength. The length of a directed circuit in

a marked graph is defined to be the summation of all the times for
transitions in that directed circuit.
Definition 2.10: Critical Path. The critical path among a group of
paths is the one which has the highest path length.

This definition of critical path is identical to the one used in
task scheduling [14, 15] and project management [16, 17].

To illustrate, let T(i) stand for the time of the ith
transition. In Figqure 1.1, let T(1) = 4, T(2) =1, T(3) =5 and T(4)
=6, T(Sy) = 0 and T(Sy) = 0. Then, the directed circuit t,,
Ps: t4, Pg, and t, has length 7. The directed path used to illustrate
Definition 2.4 has length 10. The directed path Sy, py, ty, Py, by,
Pg: and t, has length 11. These two directed paths form a group of
paths. 1In that group of paths, the directed path from S; to t, is
the critical path. It is to be noted that there can be more than one
critical path in a group of paths.

Property 2.1. The critical path length of a group of paths is the

lowest possible time to move tokens from the input of the beginning
transition to the output of the end transition on all directed paths
of that group.

This is a property of the critical path known from critical-path
scheduling [14] and project management [17]. In the context of a
marked graph, as the token has to move through all the transitions of

the directed path in order to reach the output of the end transition

25

from the input of the beginning transition, the minimm time required
is the length of the directed path. Considering all the directed
paths of the group, the lowest possible time to move tokens on all
directed paths from the input of the beginning transition to the
output of the end transition is the critical path length.

Property 2.2. With unlimited resources, tokens always take time equal
to critical path length to complete the move from the input of the
beginning transition to the output of the end transition on all
directed paths of the group.

This is another property of the critical path known from task
scheduling [14] and project management [17]. In the context of the
marked graph, with unlimited resources, a transition can always be
fired as soon as it is enabled by input data. Therefore, the lowest
possible time can actually be achieved. Hence, the critical path
length is the time to move all tokens from the input of the beginning
transition to the output of the end transition.

Directed circuits are created in the computational marked graph
in four different ways. They are node, process, recursion and
parallel path circuits. Formal definitions of each kind of directed
circuit are presented below along with examples.

Definition 2.11: Node Circuit. This is a directed circuit in the (MG
which is the only internal directed circuit of an NMG.

To illustrate, the sequence t.., ppg, tp, Ppcr Y, Pprr and tr is
a node circuit in the ATAMM node marked graph model of Figure 1.2.

One such node circuit in the MG of Figure 1.3 is shown in Figure
2.3(a). This is the node circuit of transition 1 in the AMG of Figure

1.1. Node circuits always have one token, as described in the

Appendix.

NMG of transition 1

VAN

Node
circuit

Transition 2

Figure 2.3.

L/ !

@
(a)

Process circuit

Transition 3

(b)

Example of node and process

circuits.

26

Definition 2.12: Process Circuit. This is a directed circuit in the

MG which is formed each time an NMG or source is linked to another
NMG or sink. The backward directed place from successor read or sink
transition to predecessor read or source transition, along with
forward directed places from predecessor to successor create the
process circuit.

A process circuit of Figure 1.3 is shown in Figure 2.3(b). This
process circuit is formed when node marked graphs of transition 2 and
3 are linked. Process circuits always have one token as described in
the Appendix.

Definition 2.13: Parallel Path Circuit. This is a directed circuit

in the CMG which is created by any two parallel paths in the AMG. The
circuit is formed by the forward directed places through the NMG'S of
one directed path and backward directed places from the successor read
to the predecessor read transition from the NMG's of the other
directed path.

To illustrate, the (MG of Figure 2.2 is shown in Figure 2.4. The
parallel paths of the AMG form parallel path circuits in the (MG. One
such parallel path circuit is shown in Figure 2.5(a). This circuit is
created by two parallel paths in the Figure 2.2 between transition 1
and transition 5.

Definition 2.14: Recursion Circuit. This is a circuit in the OMG

which is created due to a directed circuit in the algorithm marked
graph.

To illustrate, the recursion circuit of Figure 1.3 is shown in
Figure 2.5(b). The directed circuit t,, pg, %4, Ps/ and t, in Figure

1.1 translates itself into a recursion circuit in the CMG of

27

28

9NV Oy} Joj ydoib pexsow jpuojojndwod ¢ einbi4

o)} {0
Ly
O ") €3 1 M

) —<(OHZH 0 <O OH0)~<{ o) WYEATOT:
0 0

g uonisu uonRIsuDy

Joj ewR SN 93 Joj ewp poey
g uopieuosy

Joj} oWy ssed0.d

29

‘¢ a4nbiy woup uNo.D uoisindal v (q)
"$°¢ 24nbi4 JO 9ND 9y} wouy HNI4d yjod 9joiod vy (D)
"$}IN2J410 y}od |39|jpipd puDb u0isSuinNdas Jo djdwox] "Gz 24nbiy

(q)

$ UOIPSUDJ|
2 >(d)

9 ﬂ\KII\W\.\\

M yd

HNo1D \

uOISINIIY

L4

G

Z uoiysupa |

(0)

ER } } } }
0003000530005 0:9:0:30:060

S G =22D|d

Z l

}N2410 yiod |8)j0iDY

S

g uOsuUDJ}
10} dwil} 5S330.d

@ 'z

!

0

g uoIpsuDJ}
10} 8w} ppay

Figure 1.3. Directed circuits are created in the AMG mainly due to a
recursion in computation and hence the corresponding circuits in the

CMG are called recursion circuits.

2.3 Graph Theoretic Performance Bounds

The process of algorithm decomposition imposes bounds on the
amount of parallel concurrency and pipeline concurrency possible in a
given problem. If sufficient computing resources are available,
operation at these bounds can be achieved. 1In this section, graph
theoretic lower bounds on three performance measures are established
for decomposed algorithms to be operated in ATAMM data flow
architectures. These lower bounds are only a function of the
algorithm marked graph and the node marked graph. Therefore,
performance cannot be improved beyond these bounds by increasing the
number of resources. The remainder of this section is devoted to
developing lower bounds for these performance measures.

Iet G denote an algorithm marked graph representing a decomposed
algorithm. The lower bound for TBIO is the shortest time required for
a data token from the data input scurce to propagate through the graph
to the data output sink. Similarly the lower bound for TT is the
shortest time required to complete all computing activity initiated by
the injection of a data from the input source. These shortest times
are the actual performance times when only a single data set is
present in the graph during any time interval (no pipeline
concurrency), and as many computing resources as are required are
available (maximum parallel concurrency). Under these cperating

conditions, lower bounds for TBIO and TT are calculated by identifying

30

certain longest paths in a graph obtained from the algorithm marked
graph. This new graph, called the modified algorithm marked graph

Gy, 1s defined and then used to detemine lower bounds for TBIO and

TT.

Definition 2.15: Modified Algorithm Marked Graph. ILet p; be a
place of G, directed from transition t,. to transition tg, which

contains a token of the initial marking. The modified algorithm
marked graph Gy is obtained from the graph G by the following
construction rules:
1) Place p; is deleted from G.
2) A new place, pjq, directed from the data input‘
source to transition ts', is added to G.
3) A new output sink S; different from all other
output sinks, and a new place pj,, directed from
transition t,. to S;, are both added to G.
4) The above rules are repeated for each place of G
containing a token of the initial marking.
Example: The recursion problem of Figure 1.1 is used to generate a
modified algorithm marked graph as shown in Figure 2.6. Only place 5
from transition 4 to 2 has an initial token in the algorithm marked
graph of Figure 1.1. According to rule 1, place 5 is deleted. A new
place 5-1 is inserted from data input source to transition 2 by rule
2. Rule 3 is then used to generate a new output sink (Sg) and a new
place 5-2 as shown in Figure 2.6. As there are no more places with
initial tokens, this completes the procedure to generate a modified

algorithm marked graph.

32

Transition 2

1 2 3 4
S 1 2 3 / S
5-1 6 Place 4
S & 5_2 4

Figure 2.6. Modified algorithm marked
graph for Figure 1.1.

33

Theorem 2.1: Graph Theoretic Iower Bound for TBIO. ILet Py be the

it girected path in Gy from the data input source to the data
output sink, and let T(P;) denote the sum of transition times for

transitions contained in P;. Then,
TBIO 5 = Max (T(P;)),

where the maximum is taken over all paths P; between the data input
source and the data output sink in graph Gy.

Proof. T(P;) is the length of path P;; therefore, Max {T(P;))}

is the length of the critical path from the data input source to the
data output sink. From the properties of the critical path [14, 17],
TBIO; g = Max (T(P4)}. This completes the proof.

Theorem 2.2: Lower Bound for TT. Let P; be the i™! directed path
in Gy from the data input source to any output sink, and let T(P;)

denote the sum of transition times of transitions contained in P;.

Then,
TT;p = Max {T(P;)},

where the maximum is taken over all paths P; in graph Gy.

Proof . By the construction rules for graph Gy, a task is initiated
with an input from the data input source, and is completed when all
output sinks have accepted tokens. Therefore, TT is the time which
elapses from injection of input tokens to the arrival of a token at
the last fired output sink. Iet T(Pj) = Max {T(P;)}, among all

P; in Gy. Pj is the longest path among all paths from the

34

data input source S; to any output sink. Therefore, Pj is the
critical path among all paths from the data input source to any output
sink. Hence, by the properties of the critical path [14, 17], TTig

= T(Pj) = Max{T(P;) }, where the maximm is over all paths Py in

Gy. This completes the proof.

To illustrate the application of Theorem 2.1 and Theorem 2.2,
TBIO;g and TTpg are computed for the algorithm marked graph shown
in Figure 1.1. For this example, the following transition times are
assumed: T(1) = 4, T(2) =1, T(3) = 5, and T(4) = 6. The modified
algorithm marked graph corresponding to Figure 1.1 is shown in Figure
2.6. The modified algorithm marked graph contains two paths directed
from the data input source Sy to the data output sink S,. Path
P, is the sequence t,, p,, t,, p3, and t; with T(P;) = 10. Path P,
is the sequence t,, p;, and t3 with T(P,) = 6. Since T(P;) > T(P,),
path P; determines the lower bound for TBIO and TBIOjp = 10. The
modified algorithm marked graph contains two additional directed paths
from the data input source S; to the output sink Sg. Path Py is the
sequence t,, py, t;, pg, and t; with T(P;) = 11. Path P, is the
sequence t,, pg, and t, with T(P;) = 7. Since T(P;) is the highest,
path P; determines the lower bound for TT and TTyg = 11.

Next a lower bound for the performance measure TBO may be
determined. Let G be an algorithm marked graph representing a
decomposed algorithm. It is assumed that the operating conditions for
G are set to maximize pipeline concurrency. That is, data tokens are
continuously available at the data input source, and as many computing
resources as needed can be called to perform primitive operations.

The graph G is executed periodically and.TBO;p is the shortest time

possible between successive outputs.

35

Theorem 2.3: Graph Theoretic Tower Bound for TBO. Let G, be a
computational marked graph and let C; be the i girected circuit

in G.. The notation T(C;) denotes the sum of transition times of
transitions contained in Cj, and M(C;) denotes the number of

tokens contained in C;. Then,
TBOpg = Max (T(C;) / M(Cj)},

where the maximum is taken over all directed circuits in G. The
circuits which determine TBO;p will be called critical circuits of
the OMG.

Proof. Without loss of generality, let tg be the ocutput transition
in G so that an output is produced each time t¢ completes

firing. TBO;p is then the minimum firing period of transition

tg. By consistency property of the Appendix, Gn is consistent so
that all transitions of G, fire periodically with minimum period
TBO;p- It is shown in [18] (pp. 58-60) that the minimum firing
period of each transition of a marked graph is given by Max
{T(C{)/M(Cy)}, where the maximm is taken over all directed
circuits ¢; in G. Therefore, the theorem follows.

The algorithm marked graph shown in Figure 1.3 is used to
illustrate Theorem 2.3. The (MG contains many directed circuits.
However, the recursion circuit which contains all NMG nodes of
transitions 2 and 4 has only one token and maximizes the ratio
T(C;)/ M(C;). Therefore, the shortest time possible between

successive outputs in this graph is TBO;g = 7.

36

2.4 Resource Requirements

The performance bounds of the last section assume availability of
a resource for each transition to fire when enabled. Therefore, graph
theoretic performance bounds are absolute bounds provided sufficient
resources are available to meet the firing requirements. However, for
insufficient resources, performance cannot reach the graph-theoretic
bounds. The number of resources (R) of an ATAMM data flow
architecture imposes bounds on performance of an algorithm marked
graph. In this section, characteristics of resource usage, maximum
resource requirement, and resocurce imposed performance bounds are
investigated. Formal definitions of computation, graph execution, and
resource requirements are stated. Definitions and results are
illustrated with examples.
Definition 2.16: TC. Total Computation (TC) is the sum of all
transition times of an algorithm marked graph.
Definition 2.17: TFC. Total Forward Computation (TFC) is the sum of
all transition times that appear in the forward paths from the data
input source to the data output sink of the modified algorithm marked
graph.
Definition 2.18: TBC. Total Backward Computation (TBC) is the sum of
all transition times that do not appear in the forward paths from the
data input source to the data output sink of the modified algorithm
marked graph.
ILemma 2.1. TC is the sum of TFC and TBC of an algorithm marked graph.
Proof. With the notation of Definitions 2.16, 2.17, and 2.18,
transitions which constitute TFC and TBC are mutually exclusive and

collectively exhaustive of all transitions of the algorithm marked

graph. Hence, the sum of all transition times of the algorithm marked
graph equals the sum of transition times for both transitions on the
forward paths and not on the forward paths from the data input source
to the data output sink of the modified algorithm marked graph.
Therefore, TC equals the sum of TFC and TBC. This completes the
proof.
Definition 2.19: Computer Time. A unit of Computer Time is defined
to indicate one functional unit available over one unit of time.

To illustrate, if two functional units are used for three units
of time, six units of computer time are used.
Definition 2.20: Computing Capacity (T). Computing Capacity (CC) is
the total available units of computer time over an interval of time T.

To illustrate, for a time interval of T, the computing capacity
of an ATAMM data flow architecture with R functional units is given by
R*T. Thus CC (T) =R * T.
Definition 2.21: Computing Effort (T). Computing Effort (CE) is the
total used units of computer time over an interval of time T.

To illustrate, for a time interval of T and R functional units,
let T; be the number of time units the i functional unit is
used. Then T{ * 1 = T; units of computer time is the computing
effort due to the it! resource in interval T. Thus the computing

effort due to R resources is given by

R
CE (T) = .z (T)
1=1

units of computer time.

37

38

Lemma 2.2. For any number of functional units and any interval of
time, computing effort is always less than, or equal to, computing
capacity.

Proof. With the notation of definitions 2.20 and 2.21,

CcC(T) = R*T
R

CE (T) = = (T;),
1=1

where T; is the number of time units the ith functional unit was
used in time interval T. So T; cannot be more than T [15]. Hence,
CE(T) < CC(T). This completes the proof.

Definition 2.22: Resource Utilization (T). The Resource Utilization

(RU) of functional units over a time interval T is given by the ratio
of computing effort to computing capacity over that time interval.

Thus,

RU (T) = CE (T) / CC (T).

ILemma 2.3. Resource Utilization (RU) over a time interval T is always
greater than, or equal to, zero but less than, or equal to, 1.

Proof. By definition, resource utilization is a ratio of computing
effort to capacity. With the notation of Definitions 2.20 and 2.21,
Ty >0, T>0. SocCE(T) >0. CC(T) =R *T > 0 as the ATAMM data
flow architectures must have at least one functional unit. So RU(T) >

0. Also as CE (T) < CC (T), RU (T) < 1. This completes the proof.

Definition 2.23: Total Computing Effort (TCE). TCE is defined to be

the computing effort required to execute once all transitions of an
algorithm marked graph.
ILemma 2.4. TCE equals TC units of computer time.

Proof. With the notation of Definitions 2.16, 2.21, and 2.23,

TCE = CE(T) = = (Tj)

1=]1

units of computer time as total computation to execute all transitions

of the AMG once is TC. This completes the proof.

Definition 2.24: Total Forward Computir

defined to be the computing effort required to execute once all
transitions on forward paths from the data input source to the data
output sink of the modified algorithm marked graph.

Iemma 2.5. TFCE equals TFC units of computer time.

Proof. The proof is similar to that of Lemma 2.4.

With the above definitions and lemmas regarding computation of a
task, it is now intended to establish resource imposed bounds on the
computing time of a task. The following two theorems state the
minimum possible value of TT and TBIO for an ATAMM data flow
architecture of R resources.

Theorem 2.4: Minimum TT for R Resources. The minimum value of TT for
an algorithm marked graph operated with R resources is always greater
than, or equal to, TCE / R.

Proof. TT is the computing time to complete all computation

associated with a task input. For a time interval of TT, the

39

computing capacity of R resources is R * TT. The total computation
for any task input is the execution of all transitions of the
algorithm marked graph once and hence, equals TC. The corresponding
computing effort is TCE. By Lemma 2.2, R * TT > TCE, or TT > TCE / R
[19]. This completes the proof. 7

Theorem 2.5: Minimm TBIO for R Resources. The minimm value of TBIO
for an algorithm marked graph operated with R resources is always
greater than, or equal to, TFCE / R.

Proof. TBIO is the computing time to generate data output for a

task. For a time interval of TBIO, the computing capacity of R
resources is given by R * TBIO. In order to generate data output, all
transitions on all the forward paths from the data input source to the
data output sink in the modified algorithm marked graph must be
executed once. The computation involved is TFC and the corresponding
computing effort is TFCE. By lLemma 2.2, R * TBIO > TFCE [19], or
TBIO > TFCE / R. This completes the proof.

Two graph execution features (SGP and TGP) and two hardware usage
measures (SRE and TRE) are now defined for predicting resource
requirements. SGP describes the execution of transitions of the
algorithm marked graph for a single data packet. SRE is the
description of the resource usage to process one data packet. TGP and
TRE are the graph execution description and resource usage envelope
when the algorithm marked graph is executed repeatedly and
periodically.

Definition 2.25: SGP. SGP (single graph play) is a drawing depicting
beginning, duration, and end of execution for each transition of the

task when operated for a single data packet.

40

41

Definition 2.26: TGP. TGP (total graph play) is a drawing depicting

beginning, duration, and end of execution for each transition of each
algorithm input at steady state when the AMG is executed periodically
with an input data injection interval of TBO.

Definition 2.27: SRE. SRE (single resource envelope) is an envelope

of resource usage by a single data packet between the time of
algorithm input and the completion of all computation associated with
that algorithm input.

Definition 2.28: TRE. TRE (total resource envelope) is an envelope

of resource usage to execute the graph at steady state with input
period TBO.

Definition 2.29: Construction of SGP and SRE. SGP and SRE are

generated by firing every transition in the algorithm marked graph at
the earliest possible moment assuming unlimited resources and a single
task input. Graph play is generated by depicting execution of all
transitions in every time interval. Symbols (<, >) are used to show
the beginning and the end of execution for a transition respectively.
The resource usage envelope is cbtained by counting the number of
computing resources used during each time interval.

Example. Consider the algorithm marked graph of Figure 2.7.
Transitions 1, 2, and 4 have duration of one time unit. Transitions
3, 5, and 6 have duration of two time units. The graph is played
according to Definition 2.29 and the SGP is shown in Figure 2.8(a).
The need for resources is the same as the number of active transitions
in each time interval. The SRE is computed by counting the number of

resources used in each time interval and is shown in Figure 2.8(b).

xxxxx

42

Time for i

T .
transition 2 e ransition 2

Place 7

Figure 2.7. Algorithm marked graph for illustration
of SGP and SRE.

1 3 5 ! 6!
eSS
2 4 5
\I i |
0 2 4 1 6
| ! | Time
/(b) —~ o, 1 2 3
Section (data packet) number
(o)
Section (dota packet)
number } i i
Mol SNoe 2 13
S 2 | | !
o
: I
o 1.
(<D
0
0 1 2 3 4 5 6) 7
Time —>
(b)
SRE.

Figure 2.8. (a) SGP. (b)

43

44

Now suppose the algorithm is executed periodically. Assume that
the input data injection interval is long enough so that every data
packet executes the graph as the SGP and needs resources over the task
time as given by the SRE. As a result, the algorithm is executed with
an input period equal to output period TBO. The total resource
envelope (TRE) is to be determined then by adding the resource needs
of the concurrently processed data packets. The total graph play
(TGP) is generated by drawing the execution of transitions from all
the concurrently processed data packets. It is shown in the following
two theorems that TRE and TGP are periodic with period TBO. If SRE
and SGP are divided from the beginning in sections of TBO time units,
these sections are shown to be the contributions from the consecutive
concurrent data packets towards a period of TRE and TGP. As an
example, SGP and SRE of Figure 2.8, are divided in sections of TBO = 2
time units. Section as well as data packet numbers are represented by
the integer variable b. To illustrate, data packet 2 has been
injected two time units before data packet 1. Moreover, transitions 3
and 2 for data packet 0, transitions 5 and 4 for data packet 1 and
transition 6 for data packet 2 are executed concurrently at steady
state requiring a total of five resources. This will be later
illustrated in detail after Theorems 2.6 and 2.7 are developed.
Theorem 2.6. When the algorithm marked graph is operated periodically
for input period TBO with all data packets requiring resource
envelopes identical to SRE, the total resource envelope at steady
state is periodic with period TBO and one period of TRE is generated
by the summation of sections of SRE of width TBO as follows.

Iet SRE (x) represent the resource envelope for a single task

input where SRE (x) = 0 for x > TT. let the origin of time axis (t)

at steady state be the injection of a data packet. Let TRE (t) be the
value of total resource requirement at time t. Iet b represent the
concurrently processed data packets at time t. A period of TRE(t) is

then given by

TRE (t) SRE (t + b * TBO),

0 < t<TBO

o
A

<b < [TT / TBO].

Proof. By the rules of operation, data packets are injected and
outputs are generated at the interval of TBO at steady state.
Consider three consecutive data packets P, Q, and R injected at

t = K * TBO, (K+1) * TBO and (K+2) * TBO respectively, where K is a
positive integer. ILet d be a time unit in which the total resource
requirement is desired. Ilet s denote the time between d and time for
the previous data packet injection. Suppose d is a time between the
injection of data packets P and Q. Thus K * TBO < t < (K+1) * TBO,
and s =t - (K * TBO). TRE(t) in this interval is made of SRE's due
to data packet P and previous data packets whose computations are
completed after P has started. As all data packets have resource
envelopes identical to SRE of duration TT, any data packet which is
injected TT or more time before P has no effect on TRE in this
interval. Consequently, the total number of concurrently processed

data sets creating TRE(t) in this interval is given by [TT / TBO] .

45

46

Hence, let the range of bbe 0 < b < [TT / TBO]; b is an

integer. TRE(t) for time interval between P and Q is then the
summation of the resource requirements for these concurrently
processed data packets. Let b = 0 identify task input P whose
contribution to TRE (t) is SRE (s). The data packet which has started
TBO time units before P will contribute SRE (s + TBO) and is
identified by b = 1. In general, a data packet which is injected

b * TBO time units before P is identified by the data packet number b
and contributes SRE (s + b * TBO) to TRE (t). Therefore, summing SRE
(s + b * TBO) over the entire range of b for the concurrently
processed data packets will give the corresponding TRE (t). The data
packet corresponding to the largest b may contribute to TRE(t) for
only a partial interval. As SRE (x) = 0 for x > TT,

SRE (s + b * TBO) properly represents the contribution due to the data
packet corresponding to the largest b. Therefore, TRE (t) at d

between P and Q is given by the following equation,

TRE (t) =% SRE (s + b * TBO)
b

=% SRE (t - K * TBO + b * TBO) (2.4.1)
b
where

K * TBO < t < (K +1) * TBO

0 <b < [TT/TBO].

Now let d be a time unit t + TBO from the origin. As d now is a time

unit between data packet injection Q and R, s = (t+TBO) - (K+1)*TBO.

i
By similar arguments as before,
TRE (t + TBO) = £ SRE (s + b * TBO)
b
=5 SRE ((t+TBO) - (K+1)*TBO + b * TBO}
b
=3 SRE (t - K*TBO + b*TBO)

b

= TRE (t),
from equation (2.4.1). Thus, TRE(t) is periodic with period TEO.
Hence, it is sufficient to specify TRE (t) for one period only; let s
=t, or K= 0. Mdcdifying equation (2.4.1) we get,
TRE(t) = = SRE (t + b * TBO)
b

where

0<t<TBO

o
A

<b < [TT/TBO].

Thus, one period of TRE(t) is generated by the summation of the
sections of SRE (x) of width TBO, starting from x = 0. The sections
are identified by the corresponding value of b. This completes the
proof.

Theorem 2.7. When the algorithm marked graph is operated periodically
for input period TBO with all data packets executing the AMG as SGP,

total graph play at steady state is periodic with period TBO and one

47

48

period of TGP is generated by the overlapping of sections of SGP of
width TBO as follows.

Iet SGP (x) represent the graph play for a single task input
where 0 < X < TT. let the origin of time axis (t) at steady state be
the injection of a data packet. Let TGP (t) be the total graph play
at time t. Iet b represent the concurrently processed data packets at
time t. A period of TGP (t) is then given by,

TGP(t) = = SGP (t + b * TBO)

o™

0 <t < TBO

o
A

<b < [TT / TBO].

Proof. The proof is similar to Theorem 2.6 with one exception.

Unlike SRE, sections of SGP of width TBO represent portions of graph
play for successive data packets which overlap to form TGP at steady
state. Hence, instead of adding sections of SGP, one period of TGP
should be constructed by overlapping sections of SGP with each section
being identified separately by the value of b. If two values of b are
i and i+1, it means data packet i+l is injected TBO time units before
data packet i. This completes the proof.

Example. One period of TGP and TRE is constructed for the AMG of
Figure 2.7 according to Theorem 2.6 and 2.7 with an input period TBO
of two time units. SGP and SRE of Figure 2.8 are divided in sections

of width two time units as shown in Figure 2.8 by the dotted

49

lines. Figure 2.9 shows the TGP and TRE for input period TBO of 2.
Time t is any time when a new data packet is injected at steady
state. In the TGP, the superscript of transitions indicate the value
of b (data packet number). Data packet 1 is injected TBO time units
before data packet O. 1(0) ang 5(1) represent the execution of
transition 1 and 5 for the data packet 0 and 1 respectively in Figure
2.9(a). The TGP indicates that 5(1) begins after the completion of
1(0), Aas in SGP, (<, >) arrow symbols indicate the beginning and
end for execution of a transition respectively. In Figure 2.9(a),
transitions 3(0) , 5(1) , and 6(2) have started in this period but

did not end. Similarly 31, 5(2), and 6(3) have been completed

in this period but did not start in it. The resource usage in the
four sections of SRE in order of increasing b are (1, 2), (1, 2),

(1, 1), and (1, 0). One period of TRE is calculated by adding the
four sections of SRE. The total resource need in one period of TRE is
(4, 5) as shown in Figure 2.9(b). It is to be noted that TRE could
also have been calculated from TGP by counting the number of active
transitions in each time interval.

Iemma 2.6. Computing effort in one period of TRE is TCE at steady
state when the algorithm marked graph is operated periodically with an
input period of TBO.

Proof. As the algorithm marked graph is operated periodically,
computing effort in every period is the same. Computing effort in a
period TBO of TRE will equal TCE as one task output is generated in
every TBO time units. This completes the proof.

Lemma 2.7. Resource Utilization (RU) in one period (TBO) of TRE is

given by {TCE / (R * TBO)}.

< >]
| S0
«—3 5
(2) 6(2)
5" |
I\ !
Time — t! | t+TBO
(a)
A |
iy |
0 |
2 4 |
2 |
=}
o 3 I
S [
® |
: >
t t+1 t+TBO
Time —
(b)

Figure 2.9. For TBO=2, (a) Total graph play.
(b) Total resource envelope.

50

51

Proof. By Lemma 2.6, computing effort in one period (TBO) of TRE is
TCE. Computing capacity in the TBO time interval is R * TBO. By
definition then, resource utilization is {TCE /(R * TBO)}. This
completes the proof.
Example. Consider the SRE as shown in Figure 2.10(a) with TT = 7, TC
= 15 (ignore the dotted lines). The peak of SRE is 4 which indicates
that the ATAMM data flow architecture requires at least four
functional units to process the task according to the SRE in seven
time units. Iet TBO = 3. Tasks are initiated and outputs are
generated at the interval of three time units with all having
identical SRE at steady state. TRE is calculated from Theorem 2.6.
Dividing SRE from the beginning in sections of width TBO, as in Figure
2.10(a), with the dotted lines, (1, 1, 2), (4, 3, 3), and
(1, o, 0) are the contributions of three overlapping task inputs to a
period of TRE. Adding three sections of SRE, a period of TRE is given
by (6, 4, 5) and is shown in Figure 2.10(b). The computing effort in
three time units of TRE is 15 as claimed by Lemma 2.6. Since the peak
of TRE is 6, a minimum of six functional units is required to operate
an algorithm marked graph with SRE of Figure 2.10(a) and TBO = 3. By
Lerma 2.7, resource utilization (RU) for six functional units is given
by {15 / (6 * 3)) = .833.

With the help of above lemmas, the resource imposed bound on TBO
is established in the following theorem.

Theorem 2.8: Minimum TBO for R Resources. The minimum value of TBO

for an algorithm marked graph operated periodically with R resources
is always greater than, or equal to, TCE / R.
Proof. By Theorem 2.6, the total resource envelope is periodic. By

Iemma 2.6, the computing effort needed in period TBO is TCE. The

Data packet (section) number

Resources

d ~—~ 0 5 1

i

O i T H T >
@) 1
Time
(a)
/T\
w B —_—
0
o
5] I
44}
v
o 44
T -) 1 4%
t t+3 t+6
Time
(b)
Figure 2.10. (o) Single resource envelope.

(b) Total resource envelope
for TBO=23.

52

computing capacity for time interval of TBO is R * TBO. By lemma 2.2,
R * TBO > TCE. Hence, TBO > TCE / R. This completes the proof.

Corollary 2.8.1. The minimum value of resource requirements (R) for a

desired TBO is bounded by [TCE / TBO| when the graph is
operating periodically at steady state.

Proof. As TBO > TCE / R, it follows that R > TCE / TBO. Since R is
an integer, R > [TCE / TBO]. This completes the proof.
Example. Consider the algorithm marked graph of Figure 1.1 and the
corresponding modified algorithm marked graph of Figure 2.6. Iet T(1)
=4, T(2) =1, T(3) =5, and T(4) = 6. The sum of all transition
times are 16. Hence, TC = 16. TFC and TBC are calculated from the
modified algorithm marked graph. Transitions 1, 2, and 3 appear in
the forward paths from Sy to Sg,. Therefore, TFC = T(1) + T(2) +

T(3) = 10. As only transition 4 does not appear in any of the forward
paths from data input source to data output sink, TBC = T(4) = 6.
Also, TFC and TBC add up to TC. If only two functional units are
available, the minimm values of TT, TBIO, and TBO are 8, 5, and 8

respectively. For a TBO of 7, the minimum R is [TCE / TBO| = 3.

2.5 Summary

The computing environment and performance measures in the ATAMM
data flow architecture are established. Graph time performance is
expressed by time between input and output (TBIO), task time (IT), arnd
time between outputs (TBO). The modified algorithm marked graph is
defined to compute lower bounds for TT and TBIO. ILower bounds for the
performance measures are calculated analytically from the modified

algorithm marked graph and the computational marked graph with the

53

54

assumption that a functional unit is available for every enabled
transition to fire. The availability of a limited number of
functional units is then considered. The modified algorithm marked
graph is used to distinguish between forward computation (TFC) and
backward computation (TBC) and to establish their relation to total
computation (TC). Computing capacity, computing effort, and resource
utilization are defined. The range of values for performance measures
are established assuming that the ATAMM data flow architecture has
only R functional units. The algorithm marked graph execution for a
single task input or data packets periodically are defined in terms of
SGP and TGP. The requirements of functional units to process a single
task input or data packets periodically are expressed by SRE and TRE.
Resource utilization is defined; construction rule for SGP and SRE are
defined; and properties of TRE are described. Methodologies for
generating TRE and TGP are established. All definitions and results

are illustrated with examples.

CHAPTER THREE
AIGORTTHM TRANSFORMATION

3.0 Introduction

The lower bounds for performance measures of an algorithm marked
graph are developed in Chapter Two. One of the two remaining
important problems concerning performance measures is considered in
Chapter Three. Of interest is the potential of transforming an
algorithm marked graph, with or without decomposition, in order to
decrease lower bounds for performance. Investigation is also carried
out to use transformations to reduce resource requirements, enforce
periodicity in execution, and provide structural changes in the
algorithm marked graph. All required transformation techniques,
including an investigation of their usefulness and limitations, are
described in this chapter. Algorithm transformation techniques are
defined and elaborated in Section 3.1. Applications of algorithm
transformations for performance improvements and reduction of resource
requirements are discussed in Section 3.2. A steady state periodic
execution of algorithm marked graphs is realized in Section 3.3.
Structural changes of algorithm marked graphs are considered in

Section 3.4. A sumary of the chapter is presented in Section 3.5.

3.1 Algorithm Transformation Guidelines

The aim of this section is to define algorithm transformation

techniques and illustrate their significance. Algorithm

55

56

transformation is defined to be a process to change some features of
an algorithm marked graph while preserving its equivalence in
computations. In other words, algorithm transformations produce a new
AMG which is equivalent to the original AMG but better in some
respect. The primary objectives are to improve time performance and
lower resource requirements through algorithm transformation.
Therefore, algorithm transformation techniques which can lower
critical path length, lower time per token for the critical circuit of
the (MG, lower resource requirements, and enforce periodicity in the
execution of the AMG are of great interest. A formal definition of
equivalency of two algorithm marked graphs and algorithm
transformation techniques are stated and explained below.

Definition 3.1: Equivalency Of Two Algorithm Marked Graphs. Two

algorithm marked graphs are equivalent if they map any set of input
variables into the same set of output variables and produce an
identical output sequence for an input sequence.

Definition 3.1 specifies the allowable transformations. An
algorithm marked graph can be transformed as long as the new AMG is
input-output equivalent with the old one. It is to be noted that if
the computations of transitions and data dependency among the
transitions of the original AMG are not altered, the transformed AMG
will remain input-output equivalent with the original AMG.
Definitions 3.2 through 3.5 describe four transformation techniques
which are based on this observation.

Definition 3.2: Control Place. A control place is any place in the

algorithm marked graph whose deletion generates an equivalent

algorithm marked graph.

A control place is an artificial place in the sense it is not
necessary for the correctness of an algorithm. A control place
imposes a precedence relation among two transitions. The control
place needs to be initialized by an initial token if it creates a
circuit in the algorithm marked graph. The designer inserts a control
place in the algorithm marked graph to delay the firing of a
transition. All places in the AMG other than control places will be
called active places henceforth. If broadcasting is used to transmit
data between transitions, insertions of control places are not going
to change read and write times of transitions. Also, control places
need not transmit data vectors; therefore they can be implemented at
very low communication cost. Thus for analyses purposes, insertion of
control places in an AMG will be assumed not to increase read and
write times of transitions.

Definition 3.3: Dummy Transition. A dummy transition is any

transition in the algorithm marked graph which is not required for
executing a primitive operation.

A dummy transition is a redundant transition in the sense that it
is not required for computation. However, it can be used to control
operation or improve performance. All transitions other than dummy
transitions will be called active transitions henceforth. A durmy
transition can act as a buffer to provide storage for the output of
any transition. Such buffers will be shown to be needed at times when
the algorithm marked graph is operated periodically. A dummy
transition can be used to combine input or output data vectors in
order to create single input or output vectors respectively. Another

application of a dummy transition is as a delay operator for holding

57

58

firing of one, or a group of, transitions. Read and write time for
the NMG of a dummy transition depend on implementation and data
length, but should be less, or equal to, read or write times of an
active transition of equal data length respectively. A dummy
transition has zero process time when it is used as a buffer; it has a
very small process time when it is used for combining data vectors. A
dummy transition as a delay operator has a process time corresponding
to the amount of delay needed. As operations are restricted to large-
grain algorithms, read and write times are expected to be
significantly smaller than the process time of an active transition.
Thus for analyses purposes, a dumy transition will be assumed to have
zero time when it is used as a buffer or for combining data vectors.
Also, it will be assumed that a dumy transition for applications
other than a delay operator does not require a resource because a
resource is required to implement such a dumy transition for a very
short time. A dummy transition for delay application has not been
explored in detail in this dissertation, but poses an interesting
topic for future research.

Definition 3.4: Predefined Token. A predefined token is any initial
token on a place of the algorithm marked graph.

A predefined token indicates the presence of precomputed initial
data or initial control. A predefined token is necessary at times for
execution of the task and for forward flow of data.

Definition 3.5: Decomposition of a Transition. Decomposition of a
transition in the AMG is to replace the transition by an equivalent
marked graph of a group of transitions.

The transition decomposition of Definition 3.5 is to distribute

the computation of a transition among a group of transitions in order

to reduce the original transition time. This is important because
large transition times are major contributors to critical path length
and time per token of critical circuits. It should also be noted that
the decompositions of trancitions are not always reasonable or
possible due to added communication cost, higher resource
requirements, and transition characteristics. Serial, or a
combination of serial and parallel, decompositions of a transition
tends to decrease TBOrg significantly while TBIOrp does not

improve much and can even increase due to added serial communication
time. In those cases, a proper decomposition is dependent upon the
relative importance of TBO and TBIO. Pure parallel decomposition of
transitions decreases both TBOjg and TBIOrg.

Subsequent sections of this chapter will develop a theoretical
basis for the applications of control places, dummy transitions,
initial token and decomposition. A software program, called Ttime
[20], will be used for determining lower bounds for TBO, TT, and
TBIO. This program constructs the QG from the specified AMG to
determine TBO;p. TwO exanples are presented to illustrate the
transformation of an AMG through the use of control places and dummy
transitions.

Example. Consider the algorithm marked graph of Figure 2.2. The
corresponding (MG is shown in Figure 2.4. A transformed AMG and
corresponding CMG are shown in Figures 3.1 and 3.2 respectively. A
durmy transition of zero time is used as a buffer between transitions
1 and 6. The AMG's of Figures 2.2 and 3.1 are equivalent as they
produce the same output sequence for identical input sequences. The

dummy transition provides an additional storage space for the output

60

"} uoppdoliddy ut
ydosb pexiow wyjuobip pewuoysubil '€ einbi4

———/ UORISUDJ]

6 99D|d—

el""l

awy} 049z Jo

swny uosuba— & :o_u_a:ub Awwng

61

‘gNY PoWJOJsuDI} 8y} 1o} ydoab pexsow jouonpyndwo)d °Z°¢ 0Jnby4

uogisuDJy

9 uolIsUDL} Awwing

9 uonisuo

Joj ewy e
g uopisunJy

Joj ew}} 88ed0.d

62

of transition 1, which is to be used as an input of transition 6.
Without this dummy transition, transition 1 can fire only once before
transition 6 fires; however, with the dumy transition, transition 1
can fire again before transition 6 fires. Application of this
transformation will be described later.

An example of transformation by control places is shown in
Figures 3.3 and 3.5. Control places delay firing of selective
transitions and therefore modify SRE and TRE. The dummy transition is
used again as a buffer. Improvement due to this transformation will

be described later.

3.2 Performance Improvements by Transformation

Applications of dummy transitions and control places for
improving time performance and reduction of resource requirements are
discussed in this section. New results are stated in Application 1
and 2. Application 1 describes how dummy transitions can reduce
TBOyg of an AMG to the largest time/token among the process and
recursion circuits. Application 2 describes how the SRE of an AMG can
be modified to give a lower peak TRE through the use of control
places.

Application 1. This is an application where a dummy transition is

used as a buffer. A dumy transition can provide storage space for
the output of a transition. This can increase the firing rate of
transitions as ATAMM does not allow firing of an active transition
unless its outputs are read by successor transitions. In terms of the
MG, a dummy transition can increase the number of tokens in the
circuits of a OMG created by parallel paths in the AMG. This is the

basis for Theorem 3.1.

Theorem 3.1: Reduction of TBO;p to the largest Time Per Token Among

the Process and Recursion Circuits by Dummy Transition. Any AMG can

be transformed by using dummy transitions as buffers so that

TBOpg = Max {T(C;)/M(C4)) (3.2.1)

where T(C;) and M(Cj) denote the sum of transition times and the
number of tokens contained in C; of the Q4G respectively. Circuit
C; is a process or recursion circuit.

Proof. There are four kinds of circuits in a Q4G, as mentioned in
Section 2.2. They are node circuits, process circuits, recursion
circuits, and parallel path circuits. Theorem 2.3 has proved equation
(3.2.1) when C; is any directed circuit of the (MG. From ATAMM
model characteristics, as described in the Appendix, both node and
process circuits always have only one token. Also the sum of
transition times for process circuits are always greater than, or
equal to, that of their corresponding node circuits as process
circuits include the successor read transition. Consequently, the
largest time/token ratio of process circuits is always greater than,
or equal to, the largest time/token ratio of node circuits. The
remaining task is to show that the time/token ratio for circuits in a
MG due to parallel paths in the AMG can be reduced sufficiently to
make them insignificant in determining TBOjg. Consider any two
parallel paths P; and Pj of the AMG which begin and end at
transitions S and E respectively. Consider the parallel path circuit

in the CMG created by forward directed places (for data flow) from NMG

63

64

transitions of path P; and backward directed places (for control

flow) from NMG's of path Pj. Each of these backward directed places
has a token in the initial marking. The number of such backward
directed places are one more than the mumber of transitions on path
Pj, excluding transitions S and E. Inserting a dummy transition of
zero time on path Pj will increase the rnumber of tokens in this
circuit by one. As this dummy transition does not have any time, it
cannoct increase the T(C;) of this circuit or any other. Hence, the
time/token ratio of this circuit will decrease while not increasing
the time/token ratio of any other circuit. By inserting more dummy
transitions on path P;, the time/token ratio for this circuit can be
arbitrarily reduced. If the time/token ratio for this circuit is
greater than the largest time/token ratio from process or recursion
circuits, dumy transitions can be used to reduce the time/token ratio
to a value lower than, or equal to, the largest time/token ratio among
process or recursion circuits without increasing the time/token ratio
of any other circuit. Following this procedure, sufficient dummy
transitions may be added so that the time/token ratio for any parallel
path circuit in the (MG is smaller than, or equal to, the largest
time/token ratio among process or recursion circuits. The procedure
is guaranteed to terminate as dummy transitions, when used as buffers,
never increase the time/token ratio of any circuit. This completes
the proof.

Example. Consider again the AMG of Figure 2.2. The corresponding QUG
is drawn in Figure 2.4 assuming zero time for read and write

transitions. Therefore, TBOjp is 3. There is no recursion circuit

in the AMG. The largest time/token ratio among all process circuits

65

is 2 and the largest time/token ratio among node circuits is 2.
However, the largest time/token ratio among all directed circuits is 3
due to two parallel path circuits as shown in Figure 2.4. For both of
these circuits, parallel paths in the AMG start and end in transitions
1 and 5 respectively. Let t; denocte transition i and Py denote

place j. Path Pj for both circuits is the forward path t;, pg,

tg, Pg, and tg. Path P; for the two parallel path circuits are tq, p,,
ty, Py, t3, Pyr ty, Ps, and tg, and ty, Pys €0 Pys Y90 Por t4r Pss
and tg respectively. Both of these circuits have two tokens from
backward directed places from the NMG transitions of path P;, as

shown in the CMG. Now the AMG is transformed by inserting a dummy
transition on path Py as shown in Figure 3.1. The corresponding (MG
is shown in Figure 3.2. The number of tokens on the parallel circuits
are now 3 and therefore the time/token ratio is 2. Time/token ratio
for any other circuit does not increase as the dummy transition has
zero time. The largest time/token ratio over all directed circuits is
now 2. However, TBO;p for the AMG of Figure 3.1 is 2, and
transformation by a dumy transition has improved throughput
performance.

Application 2. This is an application to demonstrate a procedure for
reducing resource requirements. Control places and dummy transitions
are the two transformation techniques which are used. Suppose that
all the data sets of an AMG require a resource envelope, as given by
SRE, and data sets are injected at the interval of TBO time units.

The total resource envelope will then be given by TRE and the peak
value of TRE will be the required number of functional units. From

Chapter Two, TRE is periodic and one period of TRE is made by

additions of sections of SRE of width TBO. This immediately leads to
the possibility that the peak value of TRE might be lowered by
adjusting the shape of SRE if the peak value of TRE is more than the
minimum requirement [TCE/TBO|. SRE can be modified by
delaying active transitions selectively with the help of control
places. This may or may not lead to an increase in TTyg (thereby
duration of SRE) or TBIO;z depending on the "float" of delayed
active transitions. Float is the amount of time an active transition
can be delayed without increasing TBIO; 5 and TTyg.

A desired result is to modify SRE without increasing TBIO; 5 and
TTyg to achieve TBO; g with a minimum number of resources.
Unfortunately, this problem is equivalent to a class of scheduling
problems which is known to be NP complete [12]. Thus, SRE must be
modified heuristically by control places. Judicious insertion of
control places may reduce the resource requirement for the same
TBO; g, but perhaps at the expense of TBIO;p. A control place is
useful if it can reduce resource requirements by delaying transitions
with float or by sacrificing parallel concurrency to some extent.
Lastly, insertion of control places in the AMG can create dominant
parallel path circuits in the corresponding QMG which are made
insignificant following the procedure of Application 1.

The methodology for lowering the resource requirement is now
stated. First, construct SRE and TRE for the AMG at specified TBO.
The peak value of TRE is the resource requirement for an input data
injection interval of TBO. If the peak value of TRE is more than
[TCE/TBO], heuristically modify SRE by transforming

the AMG with control places with as small an increase in TBIO; g and

66

67

TTyp as possible. Make all dominant parallel path circuits created
by control places insignificant by adding durmmy transitions. An
example is given below to illustrate Application 2.

Example. Consider the algorithm marked graph of Figure 3.3. From the
AMG, TCE = 12, TBO[g = 2, and TBIOjg = TTrg = 6. The minimm
resources to achieve TBO;g are [TCE / TBO; gl = 6. SRE is shown
in Figure 3.4. Adding sections of SRE of width TBO;g, a period of
TRE is computed and is shown in Figure 3.4. The peak value of TRE is
9. Hence, nine functional units are required for implementing this
AMG for optimum time performance. As the minimm resource requirement
for TBO;g is 6, Application 2 is considered. The AMG is transformed
heuristically, as shown in Figure 3.5. The dotted lines are control
places 1 through 4. Ignore control places 2, 3, and 4 initially. The
justification of control place 1 is as follows. It is noted that
transition 5 is the only transition which has a float in the AMG.
Transition 5 can be delayed up to two time units without delaying the
output. Considering section 1 of SRE as shown in Figure 3.4,
transition 5 should be delayed one time unit so that the peak value of
TRE is reduced to 8. This is accomplished by control place 1. The
modified SRE and TRE are shown in Figure 3.6. Unfortunately, control
place 1 creates a parallel path circuit among transitions 1, 4, and 5
whose time/token ratio is more than 2. The time/token ratio of this
circuit is made less than 2 by inserting a dummy transition on the
place between transition 1 and 5. Now consider section 2 of SRE as
shown in Figure 3.6. It contributes (4, 1) to a period of TRE. In
order to reduce the peak value of TRE, a more equal distribution of

transitions among the time intervals (t, t+l) and (t+1, t+2) of TRE

68

-z uoppolddy jo uononsnlll Jo} ONV €€ a.nbi4

01 S

l |

14

J l

S b 9 I
| —~ [4
8 _. ¢
I I
swn L C)—z uonsuoi]

UOIHBUDI] — | !

Data packet (section) number

AN ! ! |
N ! 1 | 2
a4 0 -1 |
|
|
0 3- |
v |
8 |
8 2- |
a |
o 1
r ‘
i |
0 | | .
o 1 2 3 4 5 6 7
Time
(a)
9 — -
w
S 6|
5
3
O 3
e
0
1 T2 T t+4 "1+6
Time
(b)
Figure 3.4. For Figure 3.3, (o) SRE.

(b) TRE for TBO=2.

69

70

-¢-¢ eanbi4 103 9NV pewsojsunil “G'C ©InbY4

|
ot S
|t uol}isubJ}
\ —.h _ Awwng
ydo J 1 rA _—
(8) DN
|) |
3! rgdo | (9 |
I rA
8 g ¢
j b 1
do
ewi} L ¢)—7 uojsuni}

uolisuby| — | |

71

Data packet (section) number

\

! I
1
PU 2
| |
| |
n I |
f |
U |
= |
3 4 . t
N []
> | |
1 |
' |
| |
0 T } T |l T >
0 1 2 3 4 5 6
Time
(a)
3 -
(¥
[4D]
8]
>
o
o
x 4
20 _~
t "t42 "1+ 4 T t+6 7
Time
(b)

Figure 3.6. For the AMG transformed by control
place 1, (a) SRE. (b) TRE for TBO=2.

72

is needed. Control places 2, 3, and 4 do this job at the expense of
increasing TBIO;p and TTig by one time unit. The SRE and TRE of

the fully transformed AMG of Figure 3.5 are shown in Figure 3.7. Now
only six functional units are required, which is the minimum for a
TBO;g of 2. It is to be noted that the maximum utilization of
resources may not be achievable by use of control places in all cases

unless the AMG is turned into a complete chain.

3.3 Implementation Of Periodicity By Transformation

This section describes a procedure for enforcing periodicity in
the execution of an algorithm marked graph for successive data sets.
It is desired that performance and resource needs be identical for all
data sets for two reasons. First, input data should not experience a
waiting time on the critical path of a task so that TBIO;g is
achieved for all data sets. Second, the resource envelopes for all
data sets should be identical so that the total resource need can be
predicted. It will be shown in Application 3 and 4 of this section
that by controlling input data injection and transforming the AMG by
dumy transitions, periodicity can be realized in the execution of the
AMG. The need and methodology for injection control of input data is
explained in Application 3. Application 4 describes the conditions
for operating an AMG periodically with each data packet having
identical resource envelopes.

Application 3. When presented with continuously available input data

sets, the natural behavior of a data flow architecture results in
operation where new data sets are accepted as rapidly as the available

resources and the input transition of the AMG permits. From Chapter

Section number

/

’ 0

Resources

b —— —

Resources

NY

{ "{+2 "1+4 "t+6
Time
(b)

Figure 3.7. For the transformed AMG with all control
places, (a) SRE. (b) TRE for TBO=2.

73

Two, the output of the AMG cannot be generated at a higher rate than
1/TBO;g or R/TCE. Therefore, if the data sets are continuously
available, they experience a waiting time inside the architecture
which increases TBIO from TBIO;p. That is, the architecture will
naturally operate at high levels of pipeline concurrency with the
possible loss of capability for achieving high levels of parallel
concurrency. This will result in performance characterized by high
throughput rates, but relatively poor task computing speed. In many
control and signal processing applications, it is important to achieve
both a high throughput rate and high task computing speeds.

Therefore, it is necessary to control injection rate of data sets so
that input data never waits on the critical path. The input data
injection interval must always be greater than, or equal to, TBOrg
and it should be such that all task inputs always have a resource
available to fire transitions on the critical path to the data output
sink. This can be accomplished by either adjusting the time for the
source transition or as shown in Figure 3.8. It is not always easy to
adjust the source transition time as this will be the sampling
interval of sensors in a real system. All that is required is to
limit the rate at which new input data are presented to the (MG. This
is done in Figure 3.8 by adding a dummy transition in a directed
circuit with the data input source. The predefined token on the
directed circuit is for initialization. The dummy transition imposes
a minimum delay of D time units between inputs. D is chosen to be the
designer specified TBO.

Application 4. It is necessary that all data sets have the same

resource envelope so that the total resource requirement can be

Problem CMG S

'@ Controller

VA

Dummy transition
of time D

Figure 3.8.

Injection control by Application 3.

75

76

predicted. Also at steady state, it is desirable that all data sets
require resource envelopes identical to SRE as SRE can be modified to
lower the peak value of TRE as described in Application 2. In order
to achieve such a resource envelope, all transitions of the AMG should
fire as soon as there is a token on every input place. The first step
is to control the data injection interval as discussed in Application
3. If this condition is satisfied, then it can be guaranteed that a
data token never waits on the critical path from the data input source
to the data output sink for all data sets. Hence, TBIO;p 1S

achieved for all data sets. Secondly, the resource envelope for a
data set of an AMG at steady state may not be identical to the SRE
even though injection is controlled for the following reason.

Whenever there are parallel paths in the algorithm marked graph, the
transitions on non—critical paths of the algorithm marked graph will
have a float associated with them. The float of a transition is the
time by which a transition can be delayed without increasing TBIO; g
and TTyp. If there is not enough storage space for previous data,
transitions in the AMG with float may not fire even though all the
input places have tokens. The reason is that one or more ocutput
places of the transition contain previous data. This will change the
steady state resource envelope from the SRE. One way to prevent this
from happening is to use control places to eliminate all floats from
the AMG. However, this may not be always possible as any control
place has to be generated from the completion of execution for a
transition. Also, use of control places may require dummy transitions
to prevent TBO;p from increasing, which will make the AMG more

complex. A better way of enforcing SRE for all data sets

77

is to use dumy transitions as buffers in the output of transitions
with float which need more storage space for previous data. The
position and number of dummy transitions can be determined from TGP
based on SGP. As the input injection interval is greater than, or
equal to, TBO;p, SRE should be enforced for the injection interval
of TBO;g. This will also guarantee SRE for all data sets with any
higher injection interval. The reason is that transitions are
executed at a lower rate for a higher injection interval and the need
for storage space at the output of floating transitions will be
lower. The detailed procedure is now stated below.

Construct the TGP based on SRE for TBO = TBOjp. Iocate all
transitions with float and identify their corresponding task input
number. By inspection of TGP, check whether all the successors of a
floating transition for the previous task inputs have fired before the
floating transition fires. If not, the floating transition needs
dummy transitions as buffers at its output. The number of required
dumy transitions equals the number of previous task inputs for which
at least one of the successor transitions has not fired at the time of
firing of the floating transition.

Example. Consider the algorithm marked graph of Figure 3.9. From the
AMG, TBO;g = 2 and TBIOjg = TT[g = 5. Only transition 5 has a

float of two time units. SGP and TGP for TBO = TBO;p = 2 are shown

in Figure 3.10. Task input 1 has started TBO;p before task input 0,
and task input 2 has started another TBO;g before task input 1. The
successor of floating transition 5 is transition 4. Another
predecessor of transition 4 is transition 3. Notice from the TGP that

4(2) has started before 5(0); 3(1) begins with 5(0), as 4a(1) ig

4 __Transition
time

Transition 3

Figure 3.9. Example AMG for illustration of
Application 4.

78

79

<L>

Section number |
for TBO=2— O 1

"0

4@

Time — t !
(b)

Figure 3.10. (a) SGP. (b) TGP for TBO=2.

executed after 3(1) in the sep, 4(}) has not started before

5(0) Hence, one dummy transition is needed at the output of
transition 5 to store 5(1) so that 5(9) can fire according to the
SGP. Otherwise, the firing of 5(0) will be delayed as the NMG model
of a transition does not allow the firing of a transition unless the
output buffer is empty. The transformed AMG is shown in Figure
3.11(a). The TGP for TBO = 3 is shown in Figure 3.11(b). Transition
5 no longer needs a dumy transition in the output for enforcing SRE.
Hence, the transformed AMG of Figure 3.11(a) enforces SRE for TBO

equal to both 2 and 3.

3.4 Structural Changes In Algorithm by Transformation

The transformations considered so far try to preserve the
original structure of an algorithm marked graph. In certain
corditions that may not be possible, or desirable. For example, it is
possible to improve TBO;p of linear time invariant systems by
modifying the state equations. In this section, three kinds of
structural changes of algorithms are considered in Application 5
through 7. Application 5 explains how multiple input-output
algorithms or a group of algorithms can be combined into a single
input-output algorithm. This is necessary because the analysis tools
developed in this dissertation are based on single input-output
algorithms. Improvement of throughput by modifying the state
equations of linear time-invariant systems is demonstrated in
Application 6. The linearity property of state equations is used in
developing this technique and hence may not be applicable for other
graphs, in general. Application 7 considers the parallel

decomposition of transitions as a way of improving performance.

80

81

1 __Transition
time

Dummy transition
/ of zero time

Transition 3

(a)
(0) (0)
1 e 2
}e > <& 5(0) A)!
| <> |
‘ o Ko |
lk——- >— > ;
Time t | | t+TBO
— 1

(b)

Figure 3.11. (a) Transformed AMG. (b) Total
graph play for TBO=3.

Application 5. The performance model of Chapter Two considers only

single input and single output algorithms. The addition of dummy
transitions provides a way of converting multiple input-output
algorithms or a number of algorithms into one single input-output
algorithm. A dummy transition is used to combine input data vectors
or output data vectors. All the inputs are synchronized and fed to
the dummy transition at the same rate. Performance is evaluated from
the combined algorithm which represents the total task. Two examples
are shown in Figures 3.12 and 3.13. 1In Figure 3.12, AMG A, has two
inputs and two outputs. It is transformed into a single input-output
algorithm A, by dumy transitions. Figure 3.13 shows how dummy

transitions can be used to combine two algorithms into one algorithm.

Application 6. This is an application of increa;ing throughput of
linear time invariant systems by increasing the number of tokens in
the circuit. Linear time invariant systems are described by the state

equations as stated below.

x(k) = Ax(k-1) + Bu(k)

y(k) = cx(k) + Du(k) (3.4.1)

where x is the state vector, y is the output vector, and u is the
input vector. A, B, C, and D are time~-invariant system matrices. The
corresponding algorithm marked graph is shown in Figure 3.14.

Usually, Ax(k-1) is the most time consuming computation in the AMG.

In such a system, the recursion circuit determines the TBO;g. It is
shown that it is possible to reduce the time/token ratio of this

recursion circuit by doubling the number of tokens so that TBO[g is

82

83

(b)

Figure 3.12. (a) AMG A, (b) Transformed
AMG A, .

C-2

84

‘suoljisub) Awwnp Aq pauiquiod 84D 7 puD |

swyuobly (9) -z wyuobly (q) -} wyuobly (o) -gi°g 84nbiy

uopisuoyy

uopisuDs Awwng

Awwng

85

-we)sAs JUDLIDAUI ewy}} Joeull ey} Jo} ONV ‘y1°¢ o4nbiy

G uopisuDI] (O=a

improved to the largest time/token ratio of the process circuits in
the MG. This is useful if decomposition is not desirable and TBOrg
needs to be reduced approximately to the largest transition time of
the AMG. The methodology for reducing the time/token ratio of the
recursion circuit is expressed below by the statement and proof of
Theorem 3.2 with the assumption that A * () is the largest transition
in the AMG representing the state equation.

Theorem 3.2. It is possible to improve TBO;g to the largest
time/token ratio of the process circuits of a linear time invariant
system by reducing the time/token ratic; of tl;e recursion circuit by
doubling the number of tokens in the recursion circuit.

Proof. Theorem is proved by construction. Assuming A * ()
(transition 4) to be the largest transition of Figure 3.14, TBO;g is
determined from the recursion circuit. Application 1 has shown that
any AMG can be transformed so that TBO;p is determined by only
process circuits and recursion circuits. Thus, the statement of
Theorem 3.2 will be proved if the AMG for the state equation can be
transformed so that the time/token ratio of the recursion circuit is
smaller than that of the largest process circuit. Let the state
equation represent a l-input, m-output, and n-element state vector
system. The dimensions of A, B, C, and D are then (n, n), (n, 1),

(m, n), and (m, 1) respectively. Now

x(k) = Ax(k-1) + Bu(k);
x(k-1) = Ax(k-2) + Bu(k-1);

x(k) = A{Ax(k-2) + Bu(k-1)} + Bu(k).

87

It follows from the linearity of the system that

x(k) = (A * A)x(k-2) + (A * Bju(k-1) + Bu(k).
IetA*A=Eand A * B=F. Then,

x(X) = Ex(k-2) + Fu(k-1) + Bu(k). (3.4.2)

Notice that the dimension of E and A and F and B are the same.
Therefore, the amount of computation of Ax(k-1) and Ex(k-2) and
Fu(k-1) and Bu(k) are the same. However, if equation (3.4.2) is used
instead of equation (3.4.1) for representing a linear time-invariant
system, the recursion circuit has two jinitial tokens as x(k) is
generated from x(k-2). The new AMG based on equation (3.4.2), and the
original output equation, is shown in Figure 3.15. The dumuy
transitions are inserted to act as buffers so that transitions are not
blocked from firing because output buffers are never empty. Ty,

T,, and T4 are predefined tokens. T, =F * u(k-1), T, =E * x(k-2),
and Ty = x(k-1). Iet k =1, 2, 3... and the initial state vector be
x(0). Therefore, the first input and output are u(l) and y(1)
respectively. That is, u(s) = 0 for s equal to zero or negative.
Therefore, the initial values of T, T,, and T, correspond to k

= 1. Hence, the initial values of T, and T3 are T, =F * u(0) =

0 and Ty = x(0). From (3.4.2),

T, = Ex(k-2) = x(k) - Fu(k-1) - Bu(k).

88

-we}sAs JUDLIDAU] 8w} JDBU)| B8Y)} JOj NV pewsojeuDl]l ‘GI'E 9.nb14

()+4
\/ ° uoI}ISUD.}

(1—)x =* Awwng
/

(z-)a =°1 {
uonisuon e - ;.
xEE:Q\ \

(1—-a)ni="1 OO

(9
(1)x ° ..
°S ke (& Lo ° ox \&/ (e c >

0+0 0+ 0+0+0 g

(1)na C)n
(5

g uoyisuni] ()+qQ

89

Therefore, the initial value of T, is given by x(1) - Fu(0) -
Bu(l). As u(0) = 0, the initial vélue of T, = x(1) - Bu(l). Hence,
it follows from the equation (3.4.1) that the initial value of T, =
Ax(0) + Bu(l) - Bu(l) = Ax(0). Therefore, all the initial values of
the predefined tokens can be calculated from the initial state
vector. The recursion circuit now consists of transitions 2 and 4 and
there are two tokens in that circuit. The computation level of
transition 4 has not changed, although that of transition 2 has
doubled. Thus, the new time/token ratio of the recursion circuit is
T(4)/2 + T(2), where T(4) and T(2) are the times for transition 4 and
2 of the original algorithm marked graph. Assuming T(4) is much
greater than T(2), the TBO;g of the new algorithm marked graph of
Figure 3.15 is given by the process circuit of transition 4 whose
time/token ratio is the same as in Figure 3.14.
Application 7. This application establishes a method for finding the
maximum level of parallel decomposition of a transition in an AMG for
the best computing speed of the transition. Decomposition reduces
process times of transitions; unfortunately, it also increases the
communication cost due to an increase in number of transitions and
places in the graph. Therefore, computing speed is improved with
decompositions up to a certain level. For the lowest process time,
transitions are decomposed uniformly. The maximum level of
decomposition of the transition is determined from the condition for
the fastest completion of the computation represented by the original
transition.

Iet T be the computation time of a transition which can be

decomposed in parallel arbitrarily without changing T. Let this

90

transition be decomposed into N equal parallel transitions as shown in
Figure 3.16. Each T; is T/N. The time to complete the total

computation (A) for T in the worst case is then given by

A=r+T/N+Cqy+w. (3.4.3)

r and w are the read and write times to complete reading and writing
of data for all T, transitions. When this set of N transitions is
computing T, some other transitions of the AMG may be concurrently
processed. Cj is the time required by each functional unit to
receive data from the transitions of the rest of the AMG during the
computing of T. C, is assumed to be independent of N and i. Any
data are assumed to be broadcast to all functional units by a
transmission medium. It is assumed that one data packet can be
broadcasted at a time to all functional units. It is also assumed
that total transmission time for output data for all N transitions
together does not change with N. The worst case value of read and
write time for all N transitions together can then be expressed by the

following equation:

r+w=C) + NXL*¥C, + C4, (3.4.4)

where C; is the time that the transmission medium has to be used to
serve the rest of the AMG during the read and write operations for N
transitions of T. C; is assumed to be independent of N. C, is

the average access time for the transmission medium and L is the

numnber of times a functional unit has to access the transmission

S | S
T
(a)
Tq
S | S
AP
TN
(b)

Figure 3.16. (a) An AMG with a large transition T.
(b) T is decomposed in N paralle!
transitions.

medium for computing a transition. C; is the time to transmit
output data over the transmission medium for all N transitions
together and is assumed to be independent of N. Therefore, from 3.4.3

and 3.4.4,
A=T/N+Cy+ Cp + NALAC, + Cj.
For minimizing A, dA/dN = 0; dzA/dN2 = positive. Now
GA/AN = (- T/N?) + (LAC,);

d?a/aN? = 2 * (T/N3).

As T and N are always positive, d2A/<:‘IN2 is positive. Equating

dA/dN = 0,

0 = (- T/N?) + (L*C,);

N = [{T / (L*C,)}"°]

As N has to be an integer and higher N will mean higher communication

cost,

N=[[(T / (L*C,)} >1]. (3.4.5)

Also as N > 2 for any decomposition,

T>4*L*C,. (3.4.6)

92

Thus knowing C,, which is an architecture dependent parameter, the
minimm value of T for decomposition can be evaluated from (3.4.6).
Equation (3.4.5) provides the maximum level of decomposition.
Example. Iet T be the processing time for transition B in an AMG as
shown in Figure 3.17. Suppose B can be arbitrarily decomposed in
parallel. Let T =10, C, = 0.25 and L =2. As T > (4*2%.25=2), B
can be decomposed to improve performance. Let B be decomposed in N
transitions in parallel. Hence, N > [[{10/(2%.25))*°]] = 4.

In order to maintain process time for computation T reasonably higher
than communication time for large granularity, a level of
decomposition, less than or equal to, half the maximum level is
assumed to be appropriate in the following example. Thus N is chosen

to be 2. The decomposed transition B is shown in Figure 3.17.

3.5 Summary

Applications of algorithm transformation are discussed in this
chapter and transformation techniques are defined. Improvements of
TBO[g are achieved by dummy transitions. Resource requirements may
be lowered by control places and dummy transitions. Input data
injection is controlled by predefined token and durmy transition.
Periodicity in the resource envelope is enforced by dummy
transitions. The methodology for transforming algorithms into single
input-output algorithm is described. The TBOjg of linear

time-invariant systems is improved by predefined tokens. Lastly,

parallel decomposition of transitions are considered to illustrate the

trade-off between decreased granularity and increased communication

cost.

93

e 2 us
Transition time

Transition time

(b)

Figure 3.17. (a) AMG before decomposition of B.
(b) B is decomposed.

94

CHAPTER FOUR
ATAMM OPERATING POINT DESIGN
4.0 Introduction
The ATAMM operating point (AOP) describes the specification of
the input data injection interval (latency), resource requirements and
the time performance of an algorithm marked graph operated on an ATAMM
data flow architecture. The design of operating points based on the
mumber of resources of the ATAMM data flow architecture is
investigated in this chapter. The methodology is demonstrated through
examples, simulations, and experiments. Properties of the ATAMM
operating point under the allowable transformations and implementation
strategies are discussed in Section 4.1. In Section 4.2, AOP design
methodology is developed. Performance model, transformation
techniques and the AOP design methodology are verified by simulations
and experiments on test algorithms in Section 4.3. A summary of the

chapter is presented in Section 4.4.

4.1 Characteristics of Operating Point

The ATAMM operating point is the parameter set (TBI, R, TBIO, TT,
and TBO) for an algorithm execution where TBI is the input data
injection interval (latency) and R is the minimum number of resources
required by the ATAMM data flow architecture. The design problem is
to specify an operating point for executing an AMG in the ATAMM data

flow architecture which achieves optimum time performance with a

95

minimum number of computing resources. Unfortunately, this problem is
equivalent to a class of scheduling problems which is known to be NP
complete [12]. Thus, there exists no methodology for obtaining an
optimum solution which is better than enumerating all possible
solutions and then choosing the best one. However, it is possible to
develop a procedure for generating sub-optimal solutions. This is the
objective of this chapter. The design cbjective is to determine an
operating point given the number of resources, and to provide the
guidelines for generating a new operating point should the number of
resources change. Also, the expected time performance for TBIO and TT
should remain the same with any input data injection interval greater
than that of the operating point as long as the number of resources
are not decreased. The following properties are assumed in the
operating point design:

a) Input data from the source are injected into the ATAMM data
flow architecture at a constant rate, and hence the time
between successive inputs (TBI) is always the same.

b) For all input data of the task, TBIO = TBIO; g and TT =
'ITLB.

¢) Each data set requires a resource usage envelope identical to
SRE.

All of these properties are realized by the use of Applications 3
and 4 of Section 3.3. These properties are needed for achieving the
best task computing speed for all task inputs and to accurately
predict resource requirements. As stated in Application 3, the time
between successive data inputs (TBI) is adjusted to be greater than,

or equal to, TBO;p so that input data never wait on the critical

96

97

path to the data output sink. The algorithm marked graph is
transformed as in Application 4 so that the resource envelope for each
task input is SRE. The design procedure must determine the allowable
range of TBI so that the ATAMM data flow architecture has sufficient
resources to meet the resource requirements of all task inputs. Iet
Ryin Pbe the peak value of SRE. Therefore, any task input requires

at least Ry, resources to meet properties b and c. lLet Ry, be

the largest peak value of TRE for any TBI > TBOjg. Hence, with

Rpax OF more functional units, any ATAMM data flow architecture can
execute the AMG while achieving TTi g and TBIO;g for any injection
interval greater than, or equal to, TBO[p. It is to be noted that
TBI and TBO are the same for any AMG at steady state. Finally, let
the number of resources of the ATAMM data flow architecture be denoted
by R.

The operating point for various numbers of resources can be
displayed on a graph of TBO versus TT. Every point in the graph is
associated with a value of TBIO and R. From Chapter Two, TT > TCE/R
and TBO > TCE/R. Also TBI and, hence, TBO need not be increased
beyond TT as Ry, = Rypip ON the TRO = TT line. Therefore, the AOP
is expected to lie in a triangular area of the graph determined by the
number of functional units of the ATAMM data flow architecture. The
characteristics of the operating point are shown in Figure 4.1.

Let the problem be specified by an algorithm marked graph. ILet
the best possible performance under the rules of operating point
design be defined as the absolute lower bounds for the time
performance. Formal definitions of the absolute lower bourds for TT,

TBIO, and TBO are now stated.

TBO=TT line

T80 —

TCE/Rf-——- -

! AOPlies in the shaded
! area for R resources
|
1

7

TCE/R 1 —

Figure 4.1. ATAMM operating point characteristics.

98

Definition 4.1: Absolute lLower Bound for TBIO. The absolute lower

bound for TBIO (TBIOprpR) is defined to be the lowest TBIOjp for
the algorithm marked graph with or without any transformations.

Definition 4.2: Absolute Iower Bound for TT. The absolute lower

bound for TT (TTprg) is defined to be the lowest TTyp for the
algorithm marked graph with or without any transformations.
Definition 4.3: Absolute Iower Bound for TEO. The absolute lower
bound for TBO (TBOprg) is defined to be the lowest TBO;g with or
without any transformations.

let the transformation be restricted such that only dummy
transitions (of zero time) and control places (with no initial token)
are used for transforming the algorithm marked graph. Theorems are
now described to determine the absolute lower bounds under the above
transformations.
Theorem 4.1. The absolute lower bound for TBIO is equal to the lower
bound without any transformations.
Proof. Control places can create new paths in an algorithm marked
graph but do not alter existing paths in the AMG. Dummy transitions
of zero time increase the number of transitions on a path in the AMG
but do not increase the path length. Therefore, any path in the
original AMG is also a path in the transformed AMG with equal path
length. The critical path from the data input source to the data
output sink in the MAMG of the original algorithm marked graph is also
a path from the data input source to the data output sink in the MAMG
of the transformed AMG. Hence, TBIOjg of any transformed AMG under

the stated transformations cannot be lower than that of the original

one. Therefore, the TBIOprp of an algorithm marked graph is

99

100

determined by the TBIO;g of the AMG without any transformations.

This completes the proof.

Theorem 4.2. The absolute lower bound for TT is equal to the lower
bound without any transformations.

Proof. The proof is similar to that of Theorem 4.1. However, TTig
is determined by the critical path among all paths from the data input
source to any output sink in the MAMG. By the arguments of Theorem
4.1, this critical path in the MAMG of the original AMG is also
present with equal path length in the MAMG of the transformed AMG.
Thus, TTyp cannot be reduced by transformation with dummy
transitions (zero time) and control places (no initial token). Hence
the TTj1p of an AMG is determined by the TT;g of the AMG without

any transformations. This completes the proof.

Theorem 4.3. The absolute lower bound for TBO is equal to the largest
time/token ratio among the process and recursion circuits in the CMG
of the original algorithm marked graph without any transformations.
Proof. Theorem 3.1 has proved that the TBO;p of an algorithm marked
graph can be reduced to the largest time/token ratio of the process
and recursion circuits by transforming with dumy transitions of zero
time. Also, the time/token ratio of process and recursion circuits
are not going to increase as long as dumy transitions do not require
computer time. Control places, on the other hand, can create new
parallel path circuits in the (MG but do not change the time/token
ratio value of the circuits in the (MG of the original AMG.
Therefore, the lowest TBOpp and TBOarp is determined by the

largest time/token ratio among the process and recursion circuits in

the (MG of the original AMG. This completes the proof.

Any operating point will have TBIO, TT, and TBO values greater
than, or equal to, those specified by the respective absolute lower
bounds. Figure 4.2(a) displays the characteristics of the operating
point when designed with only dumy transitions (zero time) and
control places (no initial token). Any operating point resides in the
area BUWH. The point B corresponds to the operating point which
achieves the absolute lower bounds for TBIO, TT, and TBO. Lines BV
and BH represent operating points which achieve the absolute lower
bounds in task computing speeds (TT and TBIO) and the output interval
(TBO) respectively. With the specified transformations, TTyg cannot
be more than TC. Any operating point on line HW has TTyg = TC,
which indicates the absence of any parallel concurrency. Point W is
characterized by TTp = TBOjg = TC and represents complete
sequential operation with no concurrency. ATAMM is most appropriate
for problems which require both parallel and pipeline concurrency. It
is assumed that TBIO;p and TTyp are achieved for any TBI greater
than, or equal to, the data injection interval at the operating
point. Therefore, the minimum resource requirement at any operating
point is the greatest peak value of TRE for any TBI > TBO where

op’

TBOqp, is the data output interval and the input data injection

interval at the operating point.

4.2 Operating Point Design

Let the problem be specified by an algorithm marked graph for
which the ATAMM operating point is to be determined. The only
allowable algorithm transformations are dummy transitions of zero time

and control places. Predefined tokens and decomposition will not be

101

102

TC

AOP resides in the
shaded area

TBO —

T8O

v

Figure 4.2(a). AOP characteristics under specific
transformations.

considered for operating point design. The AOP design consists of six
steps. These steps are described in the remainder of this section.
The operating points are determined corresponding to different number
of resources for the algorithm marked graph of Figure 3.3 to
illustrate each step as it is presented.
Step 1. Construct the QMG from the AMG. Determine lower bounds and
absolute lower bounds for TBIO, TT, and TBO for the AMG. If TBOp
is greater than TBOprp, transform the AMG with dumy transitions to
achieve TBOp;p, as in Application 1 of Section 3.2. Determine Ry,
and Ry If Ry > [TCE/TBOp1pl, heuristically transform
the AMG with control places and dummy transitions to reduce R,
without incréasing TBIO; g, TTyp, and TBOpg, as in Application 2 of
Section 3.2. Determine new R, and Ry, values. Lower bourds of
performance for the resultant AMG are also the absolute lower bounds
for TT, TBIO, and TBO urder the specified transformations.
From the AMG of Figure 3.3, TBIOjz = 6, TTyp = 6, TBOrg = 2.
AlSOTBIOALB=6, TI‘ALB=6, andTmAIB=2. SRE and TRE
corresponding to TBO = 2 are shown in Figure 3.4. Checking all TBI >
2, Ry = 9. The AMG of Figure 3.3 is now transformed heuristically
to lower Ry,, without increasing TBIO;p, TTpg, and TBOrg, as
described in Application 2 of Section 3.2. The transformed AMG is
shown in Figure 3.5 (ignore control places 2, 3, and 4). SRE and TRE
corresponding to TBI = TBOjg = 2 are shown in Figure 3.6 for the

resultant AMG. By checking all TBI > 2, it is determined that Ry,,

= 8, Rpin = 4-

103

104

Step 2. Choose a convenient transition firing rule. A rule to
determine when an enabled transition in the CMG fires must be
specified in the graph manager. The rule usually used is that enabled
transitions fire when computing resources are available. If
contention exists, such as when there are more enabled transitions
than computing resources, firing occurs according to a priority
ordering of the transitions. For the algorithm marked graph of Figure
3.5, the highest to lowest priority ordering of the transitions is
chosen as (11, 10, 9, 7, 8, 5, 6, 4, 3, 2, 12, and 1).
Step 3. IfR> Rnax functional units are available, operate at TBI
= TBOprp- Use Applications 3 and 4 of Section 3.3 to adjust TBI to
TBOp1p ard to transform the AMG by dummy transitions in order to
realize SRE as the resource envelope for all task inputs. Eliminate
all unnecessary dummy transitions. The operating point time
performance is the absolute lower bound values for TBIO, TT, and TBO.
The AMG can also be operated for any TBI > TBOprg While maintaining
TBIO and TT at absolute lower bound values. When R < Rrax’
determine the operating point from one of the following strategies:
Strategy A: Strategy A is applicable when Ruax > R > Ryipe
Preserve TBIO and TT at their respective absolute
lower bounds at the expense of increasing TBI and
TBO above TBOAr B-
Strategy B: Strategy B is applicable for the following range of
R. Rpax > R 2> [TCE/TBOp;]. Preserve TBO
to its absolute lower bound at the expense of

increasing one, or both, of TBIO g and TTyp.

Strategy C: Strategy C is applicable when R, >R > 1. The
operating point is determined by first following
StrategyBsothatRmax>Rszin, and then
increasing TBI above TBOpyp. The strategy tries
to minimize performance degradation in TBIO, TT, and
TBO from their respective absolute lower bound
values.

These three strategies of the AOP design under resource
constraints are illustrated in Figure 4.2(b). Strategy A maintains TT
and TBIO at their respective absolute lower bound values and reduces
pipeline concurrency to lower resource requirements. Strategy B
reduces resource requirements by decreasing parallel concurrency
resulting in a higher lower bounds for one or both of TBIO and TT.
Strateqgy C sacrifices both pipeline and parallel concurrency to some
extent for lowering resource requirements.

If the ATAMM data flow architecture has eight or more functional
units, the algorithm marked graph of Figure 3.5 can be operated at
TBIO = TT = 6 and TBO = 2 by adjusting TBI = 2 using Application 3 of
Section 3.3. SGP and TGP corresponding to TBI = 2 are shown in Figure
4.3 which suggest that no new dumny transitions are required to
enforce SRE and SGP. Resource utilization over a period TBO is given
by (TCE/(R*TBO)} = 12/16 = .75.

Step 4. Execute this step if strategy A is appropriate. Increase TBI
to TBOop such that 'I’BOop is the lowest time interval between
overlapping SRE's for the peak value of TRE to be less than, or equal
to R, for all TBI > TBO,,. TBO, is guaranteed to lie in the

P op
rarnge [TCE/R| < TBOop < TTprp- Operate at TT = TTprp,

105

106

m —

Figure 4.2(b). The strategies for AOP design
under resource constraints.

107

Sectionl/ 0
number

Time t t+TBO

(b)

Figure 4.3. (a) SGP. (b) TGP for TBO=2.

108

TBIO = TBIOprp, and TBO = TBI = 'moop using Application 3 of
Section 3.3. TBIOpz1m and TTppp are also achieved for any TBI >
’I‘BOOp.

Assume, the ATAMM data flow architecture has five functional
units. As Rnin = 4, Strategy A can be applied. Following Strategy
A, it is found that TBOop = 3. Overlapping of SRE's for TBI = 3 is
shown in Figure 4.4(a). The operating point is given by TT = TBIO = 6
and TBI = TBO = 3 and RU(TBO) = (12/(5*3)} = .8.
Step 5. Execute this step if Strategy B is appropriate.
Heuristically transform the AMG to reduce Rpax Using control places,
as in Application 2 of Section 3.2. Maintain TBOrg at TBOarp by
using dummy transitions. A good heuristic is to reduce Rnin
significantly. There is a gquaranteed solution at TIyg = TC,
TBIO;p = TFC, and TBOpg = TBOprp by transforming the AMG into a
complete chain. Eliminate all unnecessary dummy transitions. Operate
the transformed AMG for TBI = TBOpyp = TBO, TT = TTrp, and TBIO =
TBIO; g using Applications 3 and 4 of Section 3.3.

Suppose the ATAMM data flow architecture has six resources. TCE

= 12 units of computer time. As R > [TCE/TBOp1 5] = 6,
Strategy B can be applied. Rpax 18 reduced to 6 by control places
2, 3, and 4 as shown in Figure 3.5. New SRE and TRE for TBI = 2 are
shown in Figure 3.7. The peak value of TRE is 6. TTr g = TBIOjg =
7. By checking all TBI > 2 for this AMG, it is found that Ruiax = 6
and Ryi, = 3. SGP and TGP for the transformed AMG are shown in
Figure 4.5. Only transition 5 has a float associated with it. The
successor of transition 5 is transition 11. By inspection of the TGP,

transition 5(1) fires before transition 11(2), which is impossible

-~
r 4

5]
0
8
S 4
0
o
o 3
2
T L T S S I
Time
(a)
4
N
8
5 3
o
®
e 2
1
t T2 t+4 t+6 't+8 ?
Time
(b)
Figure 4.4. (a) TRE for TBO=3 in Step 4.

(b) TRE for TBO=4 in Step 6.

109

110

Time t,

(b)

Figure 4.5. (a) SGP. (b) TGP for TBO=2.

111

in an ATAMM unless there is a buffer between transitions 5 and 11.
Hence one dummy transition is required between transitions 5 and 11 as
shown in Figure 4.6 to enforce SRE as the resource envelope for all
task inputs. The operating point is given by TT = TBIO = 7 and TBO =
TBI = 2; RU(TBO) = 1.
Step 6. Execute this step if Strategy C is appropriate. Transform
theAMGbyStrategyBuntilRmax>R2RminandthenincreaseTBI
to determine TBO,, as in Strategy A.

Iet R = 4. The AMG is transformed by Strategy B as described in
Step 6. NowR:mx=Gand}§xdnf3' As R is within the range of
Roay and Rypin, the operating point can be determined by increasing
TBI as in Strategy A. Increasing TBI, TBOOp = 4. Overlapping of
SRE's and TRE for TBI = 4 are shown in Figure 4.4(b). The operating
point is given by TT = TBIO = 7 and TBI = 4. Adjust TBI to 4 for the
AMG of Figure 4.6 to implement the operating point. RU(TBO) = .75.

These operating points for the AMG of Figure 3.5 are shown in
Figure 4.7. Operating point B is the only operating point which
achieves the absolute lower bounds for TT, TBIO, and TBO and is
achieved in Step 3. OPp, OPg, and OP; are the operating points

developed by Strategies A, B, and C respectively.

4.3 Test Results

The performance model, transformation techniques, and the ATAMM
operating point design procedures are tested by similations and
experiments. Simulations on the test algorithms are done by a
software simulator developed to simulate the execution of an algorithm

in the ATAMM envirormment [21]. The input parameters for the simulator

112

‘g pup G &de)S Joj 9NV pawiojsupt] "9 einbiy

uojisuol} Awwing

EV<E

UOINEUDI}

| aw e o ——¢ Uuol}IsuDJ}
I

uolIsuUDL| — |

113

5 t
4 OP
T Rw=5 Rf_ .
g 3 OP, 3
2 .
TB°u R=8 i‘a OP, ’
14 | R=6
|
0 i
5 o /8 7 '8 >
AB m—>

Figure 4.7. ATAMM operating points for the
example algorithm marked graph.

are the algorithm marked graph including all NMG transition times, the
nurber of resources, and a priority ordering for the transitions of
the AMG. The input data injection interval is controlled by adjusting
the source transition time. The simulator detects and writes all
events associated with the execution of transitions for each task
input on a graph diagnostic file. The analyzer is a program developed
to analyze this graph diagnostic file [21]. The two features of the
analyzer used in this dissertation are the node activity display and
the input/output display. The node activity display shows the
execution of transitions as a function of time. The input/output
display shows TBI, TBO, and TBIO for each task input and also plots
these quantities as a function of time. Detailed information about
the simulator and the analyzer are found in [21]. Another useful
program developed is called Ttime which determines the lower bounds
for TT, TBIO, and TBO in an algorithm marked graph by constructing the
MG and MAMG [20].

A testbed is developed to run test algorithms in the ATAMM
environment [20]. The ATAMM data flow architecture consists of three
functional units with a distributed glcbal memory and graph manager.
Figure 4.8 shows the architecture. Functional units are realized by
IBM Personal Computer AT's. Functional units commnicate between each
other by a Ethernet communication bus. In addition, another IBM PC/AT
which implements the source and sink transitions of the AMG is
connected on the Ethernet bus. This IBM PC AT is used to begin and
end the execution of the test algorithm and to generate a graph
diagnostic file recording all events during the execution of the AMG.
At the present stage, the source transition time cannot be adjusted to

control the injection rate and this rate is always equal to a small

114

115

ETHERNET_

- - +

GM GM GM
FUN FUN FUN
GLM GLM | GLM

N l

IBM PC AT

Figure 4.8. The testbed ATAMM data flow
architecture.

116

write time. Thus, it is not possible to check the entire ATAMM
operating point design procedure on the testbed. However, two
experiments are carried out to show the effect of dummy transitions in
improving TBOrp and the use of control places to reduce resource
requirements. The analyzer is used to determine the performance of
the test algorithm from the graph diagnostic file. Detailed
information about the testbed can be found in [20].

Five test algorithms are chosen to test the design procedure,
performance model, and transformation techniques on algorithms with a
wide range of structural characteristics. Execution of all five
algorithms were simulated but only two algorithms were actually
implemented on the testbed, mainly due to the resource limitations and
inability to control the input data injection interval. The results
are stated and analyzed for each of the test algorithm execution in
the following discussion.

Test 1. The primary objective of this test is to show the use of a
dummy transition as buffer in reducing the time/tcken ratio of a
parallel path circuit. Experimental time performance is also compared
with the theoretical time performance predicted by the performance
model. The test AMG and a transformed test AMG are shown in Figure
4.9(a) and (b) respectively. The purpose of the dummy transition is
to reduce the time/tcken ratio of the parallel path circuit for the
parallel paths between transition 1 and 3 in Figure 4.9(a) so that
TBO;g is improved to the time/tcken ratio of the largest process
circuit. All the transition times are expressed in seconds. Priority
ordering from highest to lowest in the test AMG and transformed test

AMG are (3, 2, 1) and (4, 3, 2, 1) respectively. The durmmy

Transition time
48" in geconds

Transition

(a)

Transition time
48" in seconds

Transition

(2)
8s 3s
Dur(my

transition

(b)

Figure 4.9. (a) AMG for Test 1. (b) Transformed

AMG for Test 1.

117

transition is implemented as an active transition of zero process
time. Read and write times of the transitions are assumed to be 220
ms and 255 ms for simulation and theoretical performance evaluation
(these comunication times were measured for the testbed in [20] for
two functional units). Lower bounds for TBIO and TBO are calculated
for both the test AMG and the transformed test AMG. It is assumed in
simulations and experiments that no resource is needed to implement a
dumy transition. Both the AMG's are executed and simulated for two
functional units which are the maximum resource requirements to
achieve TBOjp and TBIO;g in either case. Although experimental

and simulated time performance are expected to be TBIO; gz and

TBOrg, there can be some differences due to the following reasons.

The simulated performance measures are always a little higher than the
theoretical expected performance. This is due to lost clock cycles in
assigning transitions to resources and the fact that even a dummy
transition will also reguire a resource, though only for a small
duration. Experimental time performance values are higher in some
cases from the theoretical expected time performance due to one or
more of the following reasons. First, Ethernet cannot implement more
than one read or write operation at the same time. Second, as the
dummy transition is nonideal, it requires a resource. Third, read and
write times for NMG transitions were measured with no contention,
which is not true when a number of transitions try to communicate at
the same time. Fourth, there is a slight increase in actual process
times for transitions due to interrupt from other functional units.
Experimental and simulation results for both AMG's are presented in
Figures 4.10 through 4.13 and compared with theoretical performance

lower bounds in Table 4.1. The node activity display shows the

118

TABLE 4.1

COMPARISON OF RESULTS FOR TEST 1

Experimental
Results (s)

Simulation
Results (s)

Theorstical
LB's (s)

Algorithms

Av. Av.
T80 | TBIO

Av. | Av.
TBO | TBIO

TBOLB

TBIO

AMG for Test
1

13.13|16.41

13.28(18.53

13.17

1 3.425{

Transformed

AMG for Test
1

9.23| 16.43

9.1 |16.53

8.685

1 8.4253

119

120

"} IS8 Ul ONY 8y} Joj synses uonpnWis Q| einbiy

€591 BZEY BZEY (87 |
€591 82ct Bzl 6
€591 62} 8ZET 61
€591 0ZEY 827 =21
€59% 0ZE} 8Z€S :9
€591 0ZE1 B7€1 :S
€591 BZET BZEY :h
£S9) 82€1 9201 °
€S9} 62€T 8ZEN : |
£591 8761 826N ;|1

€591 0Z€) 8ZEL -4l
€597 92¢1 8ZET :
€591 82EV 6ZET <P
€591 62T A7ET h\ _
£991 82T BZEr 19

A

a—
Hil

IHRIBEIHENY |

T T

WIRARILIR
HHRIBINIHIRG
HILTBHRHRNI
RUTHIUTHANE
HNRIIHR B
BT

I

e

et T —

e 7Y | B8 72 30174 % b
£591 8Z€T BZEY :¥
£SYY BZET BZE :E.
€591 8ZET B2EY 12>
e il bl ettt 2.1 1§21 1 ' RS S
olgr ol a1 - !

—]
-
A S - g——

P

——————
poses + rapmagwreinei {

[pusmnumrpusim
‘———--——-A
[§::01:s1rmmeprine

—— e re—
===

SIIIT TS I
=
=

Voswrusmasn ws emamry
- (IS

o N

AV14SIA INdL00/LNINI JUIS AVLISIQ ALIALLOV 300N JIHLS

121

| 3169] Ul HNY PIWLIOJSUDI} Y} JOJ §}NE3JS UOKDINWIS

"L 1'% 94nbyy

ES9T 816
€591 816
€991 816
€591 816
€591 416
€591 816
£591 a16
€591 B16
£591 816
£991 8l6

816 :8Z
816 :67
a6 .8
016 ¢}
e16 :9
816 -

816 {1
816 L1
e16 @21
e16 31T

£591 681681661

£591 016
€597 016
€591 816
ES9T 816
€591 816
£991 816
£591 816
£591 616

e ittt % | ;1 3 2t

ol8l o4l

816 6
o6 :B
816 4
o6 9
816 :S
816 :¥:

[

816 :Z:

al

T

T

Ml

il

11

|

AVTdSIQ 1nd1N0/LNdNI

fwanps

AV1dSId ALIATLOY JQON

“?

A

122

"1 1691 Ul H9NY Oy} Joj s3|nsas |pjuswiadx3y -z ainbiy

JEVETE

i ' il
i
nlmumwn |

i

f
b — 2 R-EIEFGIEES ___
] |

hmo«mdmﬂm—mg “ah
EvY1 E1ET BBET 5
BE9Y EIET BIET bl

MEN ___M______M
! m__

2691 €1€T GIEY 41

£P9F BIET 0OCT o) ﬂ E _= m
L£91 CIET EIET “mﬁ m]
€491 E1EY EIET N.E m

6

£r91 E1ET EIET
£p91 $IET E1ET \m

Zv91 €IET bIET 4

£F91 E1ET LBET 19

N
€bOr ETET ETET 4 | L | E m ___ Bou |
eb9r o1et 611 o6 | | Il g ﬁﬁ

€91 ETEV ETET 127
it EVOF PSIN AT ¥
oldL odl 19l

AVTdSIA 1NdLN0/LNdNI STl AYTdSIQ ALIALLOV JQOW

STyl

INPUT/OUTPUT DISPLAY

dunnyls

NODE ACTIVITY DISPLAY

dummyls

REARNAREAREE

JIIN

Fiqure 4.13. Experimental results for the transformed AMG in Test 1.

123

124

execution of transitions with time in the order of transition numbers,
with transition 1 being the lowest. TBI, TBO, and TBIO of the
input/output display are to be divided by 100 for converting all times
to seconds. From the input/cutput display there is a significant gain
in TBO by the transformation. Performance varies very little with
task inputs. From the table, it can be seen that TBOrg is improved
from 13.17s to 8.695s by the dummy transition. It can also be seen
that the experimental and simulated performances are very close to the
theoretical lower bounds of performance, except for the TBO of the
transformed test AMG. This is primarily due to the fact that the read
of transition 3 and that of the dumy transition in Figure 4.9(b)
cannot occur at the same time. Also, as there are only two resources
with the priority of transition 1 being the lowest, no new task input
will be accepted until the operation of the dummy transition is
completed. All other results are as expected.

Test 2. This test illustrates the use of a control place to reduce
resource requirements (peak of TRE) while maintaining TBOrp. Also,
theoretical and experimental time performances are compared. The test
AMG and the transformed AMG are shown in Figures 4.14(a) and 4.14(b)
respectively. The test AMG of Figure 4.14(a) requires three resources
to operate at TBIOrg and TBOjp. The AMG is transformed as shown

in Figure 4.14(b) which achieves TBO;g With only two resources at

the expense of increasing TBIO;p (assuming that no resources are
required for the dummy transition). All the transition times are
expressed in seconds. Priority ordering from highest to lowest for

the AMG of Figures 4.14(a) and 4.14(b) are 4, 2, 3, 1 and

Transition time
in seconds

Sl
1s
(a)
28
Dummy
in seconds
Transition

1

(b)

Figure 4.14. (a) AMG for Test 2.
(b) Transformed AMG for Test 2.

125

126

5, 3, 4, 2, 1 respectively. Read and write times for each NMG
transition were measured in [20] to be 0.275s and 0.31s respectively
for three resources. The test AMG of Figure 4.14(a) and the
transformed AMG of Figure 4.14(b) are run on the testbed and simulated
with three and two resources respectively. Experimental and
simulation results are described in Figures 4.15 through 4.18 and
compared with theoretical lower bounds in Table 4.2. In Figures 4.15
through 4.17, TBI, TBIO, and TBO are divided by 100 to get time in
seconds. The times in the input/output display of Figure 4.18 are
divided by 18.2 to get time in seconds. It can be cbserved that the
transformed AMG achieves almost the same TBO as the original AMG;
however, TBIO is increased by nearly the time for transition 3 of
Figure 4.14(a) in the experiment and simulation. The differences in
experimental results from theoretical lower bounds for both the AMG's
are primarily due to nonideal dummy transition and Ethernet
communication problems, as described in Test 1. The difference in the
simulation results from the theoretical expected performance is mainly
due to lost clock cycles in assigning transitions to resources and due
to nonideal dumy transitions. The experimental performance for the
transformed AMG unexpectedly went through a wide variation initially.
One probable reason is the lack of proper injection control, which may
cause the communication software (for implementing Ethernet
communication) to be unpredictable. All other results are as
expected.

Test 3. This is a simulation for the execution of a test algorithm
shown in Figure 4.19(a) to check the ATAMM operating point design

procedure. Iet T = 1000 time units. The read and write times of the

COMPARISON OF RESULTS FOR TEST 2

TABLE 4.2

Experimental |Simulation | Theorstical
Results (s) | Results (s) LB's (s)
Algorithms Av. Av. Av. | Av.
TBO | TBIO | TBO | TBIO TBOu TBIO
AMG for Test|5.00 | 8.25 | 4.98| 8.36 | 4.86 |8.255
2
Transformed
AMG for Test 5.16 | 9.81 | 5.13| 9.56 | 4.70 |9.4
2

128

" 1591 Ul WY By} Joj s}nsas uono|nwis "Gl aunbig

%8 B6F B6h @7 =SS ==
%8 sk 86k 6l
%8 86k B6h (6
%8 85b OGb 3¢
%8 86h 86k :9 -
9%8 b f6h "% . .
%8 Bk B5b :HI
%8 85b O6b {1
98 B6b B6b 1
9B B6b B6F 10
. 98 85k 86b {81 BV E T E
98 85k 6k 36 \ N
RS
%8 86h B6h :l
%8 G6b B °9
%8 86k 86k S | ‘
mwe s T
%8 6b B6b (ti| | |
I - - . T B ik
%8 2B K 1
oIl ogl 141
AV1aSIQ 1000/ 10aNE 1408 AVIISIE ALIALLOY GON 1808

129

-Z 189] Ul OWY PBWLIOJEUDI} By} Joj §}nNsal uopp|nwis 917y 91nbi4

E1S
E15
15
£1s
Els
E1S
E1S
E1s
E1s
1S

E1S
t1s
Els
€15
€15
1S
Eis
£1s
Els
Els

1S
s
E1s
ElS
E15
15
£1S
E1s
1S

REARRERRARERAERRRRRE

95 836
o1gl o4l

t1s
Els
ElS
£15
€ls
EIs
E1S
E1S
E15

&
191

e R V-

- -

TTTTTTTUITTanianveoh
Innus

AVTSIA LNdLN0/ENdNI

€48

AV1dSIQ ALINLLDY JQON

EdS

130

"Z 1891 Ui 9NV 8y} J0j s3Insal |pjuawuadxy /¢ @4nbiy

== ==EEEEEE EEEE == «% EEE
8 oos 0es 82| EEEEEEEESTILESIEEE SESsat
S8 S B85 :6) = b e L E
528 645 88S 81
S8 BES 08s L
SZ8 89S @85 9 ‘ ‘
8 S 65 S i _ I
78 089S 85 b | | I
78 085S 89S :f | yiEiR Rl SRR LR
SZ8 865 B85 .
S8 60S 85 ”w—
6c8 985 685 g4I Bl TR ,
- 788050054 | | \ 4K m N
V28 o5 oes B2 bz8 ees ees 8 | |NQ N \ | W ,
V8 89S BAS 1l K28 U9S 0eS Gl
b8 08S BES 92 ¥ZB BOS 6ES 5....
b8 BAS 989G S vZ8 84S 695 S ‘
R EEEE BB
S8 WS 89S €7 W8 BeS 688 E:
SZ8 @85 @S 72 K28 685 NS :7 |
aaaaaaaaa 2T 05 eI T2 68 9B 9T T
olfl ol 141 014l o4l 141
AV1dSIQ INd1N0/10dNI VAT AVIdSIA@ ALINILOY IAON VAL)

131

-z 1691 Ul HNV PSWIOJEUDI} BY} 10} S}NE3I jpjuswpedxy gL'y @4nbly

LFFITT

e e m— = - IR ' g 1Y
L
&1 ¥ ¥y Y
& ¥ 8 | 9
8 16 6 Y
Bl % 12 '€
yIE €2 6 'iC
€2 61 9 I
o181 o1 18
AVISI 1NALNO/INKI TED

[l g

AVIISI ALIAILOY 3QON

1€4)

132

2T
4
\/\1"[A 1T AT
s, =2 —(3)—{6) {54
Transition
6
Transition
time — 2T
(a)
wn
S 4
S
S 1
O
o
0 T T —
0 17T 4T 5T
Time
(b)

Figure 4.19. For Test 3, (a) AMG. (b) SRE.

NMG transitions are assumed to be zero. Then TBIO;g = 4T, TTyg =

5T, and TBOjg = 3T. No further improvement of TBO;p is possible

as it is determined by the time/token ratio of the recursion circuit.
Hence, TBIOprp = 4T, TTpyp = 5T, and TBOppp = 3T. SRE is shown

in Figure 4.19(b). By checking out all TBO > TBOprg, Rygyx = 3+

and Ryj, = 2. Also TC = 8T, TCE = 8T units of computer time. As
[TCE/TBOa1pl = 3, Rpay cannot be improved any further

and Strategies B and C cannot be applied. So if R > 3, the ATAMM
operating point is determined by Step 3 as TBI = 3T, TBIO = 4T, TT =
5T, and TBO = 3T for all task inputs. As there are no floating
transitions, Application 4 is not required. For R = 2, Strategy A of
Step 4 in the ATAMM operating point design determines TBI = 4T, TBIO =
AT, TT = 5T, and TBO = 4T for all task inputs. The AMG execution at
the operating points determined by Steps 3 and 4 are simulated and
results are described in Figures 4.20 and 4.21 respectively. The
achieved time performance in simulation is very close to the predicted
theoretical time performance of the ATAMM operating point design. 1In
the simulation of the operating point given by Step 3, TBI = 3.02T is
used instead of 3T because TBOp;p is slightly higher in the
simulation due to lost clock cycles.

Test 4. The algorithm of Test 4 is a subsystem of a Space
Surveillance System and is described in Figure 4.22(a) (ignore the
dotted line). ILet T = 100 time units. The read and write times of
NMG transitions are assumed to be zero. Then, TBIO;g = TTyg =
TBIOALB =TTy = 18T and TR)LB = TBOpIB = 10T. SRE is shown

in Figure 4.22(b). By checking out all TBI > TBOp1p, Rpay = 4

and Ryj, = 3. Now TCE = 25T units of computer time. As

133

134

"¢ 159] Ul ¢ dais Jo 4OV 404 S}NEaL uoppnWIS "0Z"+ 9.nbid

828 9€8E 9Bt
826F 9E6E 9Eat.
8280 9E6E 9E6E
8280 9EBE 9EOC
8zeb 9E6E 9EBE
828p 9E8E 9LHE
826p 9£8E 9E6t
0Z8F 9€6E 9E6L

' 1A

61
8t
A
91
1
47
£l

078y JEeE JEEE .Nﬂ

BZ8b 9E8E 6L

8Z8k 9t8t 9EBE :
878F 9€6E 9EHE :
§Z8p 9tet 9eet :
820k 9EBE 9EHL :
826% 9EBE SCEE :
878y 9t6E E6E ©
8760 9E8E 9T6E -
§28b 9€6E E6E
828y S56L LZ8E :

olal o8l 1l

a1t

SN® eS8y e

i1

i

m
m

AV1dSIA 10d1N0/LNdNL

e

AV1ISIE ALIOILOY 300N

135

C 389 uly h@@ao.ﬁm JO 4OV 10j B}InsaJ uoipjnuig

12+ eanbi4

820y SEBY Oty
626b 9tev Iteb
gz8r Sear 9k
8zav ey IEey
828y 9ty 0¥
828y 9€8F 98y
8z8p 9ted Itak
8zar 9E0v 9E8p
828k 9cey %€y

$285-960F-9E8h—H

628k 9E0F 9EBK ‘g1
828k 98K 90V

628F 9E0F 9P
628k 9k 9EaY

8zav 9E8y 9E8b

4zev 9y 9e8y
828p 9t8y 9tey :
828 8P 9EUP :

8z8v €8k %8k

878k SEO8 68V :

oidl o4l Jal

74
61
]
A
91
'Sl
44
£l
A

- N M LD 8 S-T T

==

AVTdSIA 1NdLN0/LNANT

bino

AV1dSIQ ALIAILOY JQON

yymo

136

Trornsition 2T 4T
time /Tronsition
— 5 5
/2
1T 7T
N oS
5 (1) @/@ &
10T
(a)
3]
7]
5 2
o
a
7o
[a
0
01T 2T T Time 18T
(b)

Figure 4.22. (o) AMG for Test 4. (b) SRE for
the AMG of Test 4.

137

[TCE/TBOppgl = 3, it may be possible to lower Rp,, to 3.

A control place is placed from transition 5 to 3 for that purpose, as
shown by the dotted line in Figure 4.22(a). The new SRE is shown in
Figure 4.23(a). It was checked by the Ttime program that TBIOrg,
TTyg, and TBOjp were unchanged by the control place. By checking

all TBI > 10T, Ry = 3/ and Ryi, = 2. Hence, Strategies B and C

of the ATAMM operating point design are not appropriate as Ry, will
always be equal to or more than 3. For R > 3, Step 3 of the ATAMM
operating point design determines TBI = 10T and TBIO = TT = 18T for
all task inputs. For R = 2 Strategy A of the ATAMM operating point
design determines TBI = 17T, TBO = 17T, and TBIO = TT = 18T. The
graph play for a single task and the total graph play for TBO = 10T is
shown in Figures 4.23(b) and 4.24 respectively. By inspection of TGP,
no dummy transition is required to enforce SGP and SRE. The AMG
execution at the operating points, determined by Steps 3 and 4, are
simulated and the results are described in Figures 4.25 and 4.26
respectively. The achieved time performance in simulation is very
close to the predicted time performance of the ATAMM operating point
design.

Test 5. Execution of the algorithm marked graph in Figure 3.3 is
simulated for all the operating points developed in Section 4.2. All
the process times for the transitions of the AMG are miltiplied by T
(T = 1000 time units) in the simulation. The read and write times of
the NMG transitions are assumed to be zero. The results of the
simulation for the operating points of Steps 3 through 6 are described
in Figures 4.27 through 4.30 respectively. It is to be noted that the

TBI's used in the simulation for the operating points in Steps 4

138

LA

N

Resources
'—A

0
J I T - - D
o117 27 8T Time 16T 187
(a)
1
B 1< : >
L L | |
K : 4 I 1 >|l
i N |
I
[T T Ir*—~|L i - ! >
01T 3T 7T 8T "7 . 18T
Time
(b)

Figure 4.23. For the transformed AMG, (o) SRE.
(b) SGP.

139

(1) "
45 &—2—>
|

l

|

Time —5 t

Figure 4.24. TGP of the transformed AMG
for TBO=10T.

140

.y 1801 Ul ¢ dejS JO JOV JOj S}NEe uoRDINWIS "GZT'¢ °Inbud

2181 8987 88871 :67
2181 8891 6981 16!
187 0981 8981 :81
181 8997 6901 :LI
181 8091 8991 9!
2181 8001 8981 'S}
19180818981 ¥
101 8847 0881 €1
2181 8891 6807 71
L1617 8981 8eel (7
L1681 6081 8e01 .61
101 0887 9881 :§
e o mm mm mm mm e —m == == == == =L 1G] 08T -898] 4
L181 5081 8991 1L
2187 6997 8041 :
181 9001 0081
2181 8901 90l °
181 6981 881
2187 6081 88T :
9181 €282 08T :
olal odl 141

AN M S8

N

[TTTTETTIT

IHHNNLL

_—

=

il

AVIdSIQ 1NdLNO/LNdNI Juputp

AV14SIQ ALINILOYV 3GON

njutp

141

-4 159] ul ¥ ABa1p)S Jo OV JO) s}nsal uoRpjnwils ‘9Z'¥ 94nbi4

9181 B8LY 6OLT (67 _ _
9181 88LY BBLT :61
9181 88LT 8ALT :6F
9181 88T eaLT 3L _
9181 9821 8821 91 _

9181 882} 8AL1 S
9181 B8LT 88T ¥}
9181 88T 881 :E1
9181 BALT 86LY 71

918} 681 88T 81
9187 88LY 88LF 6
9191 8821 8ALF :8
9181 8841 8BLF :J
9181 BALY 68T :9,
9181 8821 BALT :S:
9181 BALT 681 :¥:
9161 BALY BBLY € :|
9161 68L1 8OLT :Z
SI8T Z25E (8T :1
olfl oal 1l

AL

Av14Sia 1ndino/LndNI Liad! 4 AVTSIA ALIALLOY JAON ELAL)

INPUT/0UTPUT DISPLAY

lind?

NODE ACTIVITY DISPLAY

e

T8I TBO TRIO

s 1: 2813 06893 6809

2: 7062 2068 6886
10: 2068 2068 6886
11: 2668 2868 6666
12: 20868 2068 6886
13: 2868 Z868 6836
18: 2868 2068 6886
19: 2068 26868 6886
70 2668 2068 6686

16: 2860 2068 6886
157 2868 2868 6886

167 -2668-2868-6686

17: 20668 2868 6806

lind?

Figure 4.27. Simulation results for AOP of Step 3 in Test 5.

142

INPUTZOUTPUT DISPLAY

linl4

NODE ACTIVITY DISPLAY

linl4

T8I TBO TBIO
3063 9138 6875
3064 3967 6678

3067
34
30
72
3872

EEEEEEEEEEEEEEEEE

o3 o~ O 6 3 5
SEREREEERERR

o N ~ o ~ ~
ZESESREEERRRRRERRS
NS TBLNEARSNETREEEES
ﬁ T o G =

- =3 =
m == ==
ES ol gm o o2

— = o d &= it
- Joga¢
7 EEE
n =EEEL
- “==dam
- ===
- d5= 3=
— = m L
- Z
- = = = &

28. Simulation results for AOP of Strategy A in Test 5.

Figure 4.

143

144

-g 389] ul g AB93p.)S JO 4OV J0O) S3INEVJ UOPDINWIS “6Z°F 9.nbi4

bhIL STIZ SITZ 82
1 eI SETZ SIVZ 6l
bbIL SITZ SI12 8T
WL STIZ ST1Z @40
T T pPTL SITZ STIZ 191
VhIL SITZ SVIZ 58T
bhIL STIZ SITZ 231
bhIL S1IZ STIZ :ET
brIL SITZ S1IZ =20
PPIL SH12 SITZ o |1
¥biL SIIZ SITZ :41
PhIL SHIZ STIZ G
bbIL SIIZ SHZ 8
bYIL STIZ STIZ
I / 41 3 111411 T2

/
9
WL STIZ STIZ S
WIL STTZ STIZ :¥
3
z
1

bl SHIZ STIE .
biL STV STE ¢
br1L BSZ6 VIIZ ¢
oldl og: 141

L aemessesettyitt

AENEFEEFREVEEPFEFLEL
IEIMVEIMVEINEIEFEAE LS
LENEFEFEELEPLEL L
AEAEINEREFLEFLEEL LS
EAUEUIEVNEYUERTEUNEY
MEREEEREERRREERERELERL LR

FEVYENONNYSNNNNONND

TTTITTTIT T T I inl b
(TT T I T rrrrrrrTirred

AV1dSIa 1ndLno/LNdNi B Adl]

AU14S1Q ALINTIOV 3QON g

145

-G 369) ul O Abejons jo JOV 40} §}NESI uopowis "Og¥ 9.nbiy

Z08L 1.0 Teb (82
2602 12680 128k 61
766 128v 1280 (61
200, 1200 108 2L
2682 128% 128% 191
288 180 1.6k ST

2884 1200 1206 i€}
2084 1285 1200 71
2802 18% 1280 :31
7864 129 128y 01
298L T20% 120 3G
ey 0 b I
2800, 128V 1000 34
786 128 126% 9
7082 1200 108)
700L 1BV 128V :
268L 128V 1200 :
7884 T28b 1L0F :
7802 IVTTTVORY :
olal 0gL 181

788 19 128 b

ARRERERRA RN AR
BT TEO TR0 EO e UENTED

, ,

BEEERRARER R R R

AV14SIA 10d1N0/NdNI vt

AVI4SIQ ALIALLOY 00K

146

through 6 are slightly higher than the value predicted in the ATAMM
operating point design. The reason is, again, a slight increase in
the transition times of the AMG in the simulation due to the time

needed to assign transitions to resources.

4.4 Summary
A new term, the ATAMM operating point (AOP), is defined to
express all the parameters of an algorithm execution in the ATAMM data
flow architecture. The characteristics of an AOP are explored for
finite resources and under specified transformations. The absolute
lower bounds for performance measures are defined. TBIOx1 B/
TTprp, and TBOpyp are determined under transformations by control
places and dummy transitions. A procedure is developed for operating
point design given the number of functiocnal units. The performance
model and the use of dummy transitions and control places for
improving time performance and resource requirements are illustrated
through experiments and simulations. The ATAMM operating point design

methodology is checked by simulations on test algorithms.

CHAPTER FIVE
CONCLUSION

Performance modeling and enhancement for concurrent processing in
the ATAMM data flow architecture have been the primary thrust for this
research. Several key results are achieved in that respect. First, a
performance model is developed to determine performance of an
algorithm executed periodically in the ATAMM data flow architecture.
Second, algorithm transformation techniques are identified and their
applications are illustrated in improving time performance and
resource (computing element) requirements. Third, an ATAMM operating
point design procedure is developed to specify time performance and
input data injection control for periodic execution of an algorithm on
an ATAMM data flow architecture. Significant results in these three
areas have been discussed. Finally, future research topics are
suggested.

The starting point of this research has been to define the
computing environment and performance measures for the periodic
execution of algorithms in the ATAMM data flow architecture. The
architecture is assumed to have R identical computers, or functional
units, and executes algorithms according to the rules of ATAMM. These
computers, or functional units, are also denoted by the terms resource
and computing element. The performance of an algorithm is measured by
the time between input and output (TBIO), task time (TT), and time

between outputs (TBO). Graph theoretic and resource imposed bounds

147

148

are developed for these performance measures. Also, the graph
execution pattern and resource requirements are defined through SGP,
SRE, TGP, and TRE. These results establish a new model for evaluating
performance of algorithms in a hardware independent context as long as
the architecture obeys the rules of ATAMM. Hence, it is now possible
to compare the relative merits of different algorithm decompositions
with respect to performance and resource requirements for the ATAMM
data flow architecture.

The performance model enables the user to identify the cause of
performance limitations. It is observed that the critical circuits of
the MG and the critical paths of the MAMG are the determining factors
for the graph theoretic lower bounds of time performance. Also, the
total resource requirement (the peak value of TRE) is determined by
the shape of the resource envelope (SRE) and TEO. Hence, it may be
possible to enhance performance or reduce resource requirements by
transforming the algorithm marked graph while maintaining its
equivalency. Algorithm transformation techniques are identified which
can be used to improve time performance or aid resource envelope
modification. Transformation of an AMG may, or may not, involve
decomposition of transitions. This research has concentrated on two
of the transformation techniques, namely durmy transitions and control
places. Concentration on these techniques is due to their wide range
of applications, ease of implementation, and negligible increase in
communication time by transformation. The most important contribution
of this research is the application of dummy transitions which provide
storage space for output of transitions. Dummy transitions have made

parallel path circuits in the (MG insignificant for determining

149

TBOyp- Thus, it is now possible to use control places and dummy
transitions together to change the SRE without increasing TBOjp.

Dummy transitions can improve TBOpp by reducing the time/token ratio
of dominant parallel path circuits. Another application of dummy
transitions is to enforce the SRE as the resource envelope for all
task inputs. Hence, it is now possible to enhance the throughput of
an algorithm execution in the ATAMM data flow architecture. Also, the
algorithm marked graph can be transformed according to the resource
capability of the architecture or to make the resource need for
periodic operation predictable.

The ATAMM operating point (AOP) design procedure uses the
knowledge of the performance model and algorithm transformation to
specify an operating point for executing an algorithm in the ATAMM
data flow architecture. The only transformations used for the AOP
design are dummy transitions as buffer and control places. The ACP
design describes the procedure to achieve the absolute lower bound of
time performance under these transformations. It proposes three
strategies corresponding to sacrificing pipeline concurrency, parallel
concurrency, and a combination of both to meet the limited
availability of resources. Pipeline and parallel concurrency can be
reduced by reducing input data injection rate or by transforming the
AMG to modify the shape of SRE respectively. Although the design
procedure is partially heuristic because of the NP completeness of the
problem, it allows the user to make a trade-off between pipeline and
parallel concurrency for limited availability of resources.

Test algorithms are simulated by a PC-based simulator [21] to

validate the ATAMM operating point design procedure. The read and

150

write times of transitions are assumed to be zero. Process times of
transitions are in the order of hundreds of clock cycles to keep the
algorithms at a large-grain level. This order of transition times are
appropriate as the simulator takes less than ten clock cycles for
assigning transitions to resources. Dummy transitions and control
places are realized as regular active transitions (of zero process
time) or active places respectively. It is assumed that a dummy
transition does not require a resource. Simulated performance of
algorithms are always very close to that predicted by the AOP design
(within 2.1% for TBIO and within 5.8% for TBI and TBO). One
significant observation is that the proper input data injection
interval in the simulation is slightly higher than that predicted by
the AOP design (within 5.8%). These differences between theoretical
and simulated results are mainly due to a slight increase in
transition times by the unaccounted clock cycles in assigning
transitions to resources.

Test algorithms are executed on a testbed ATAMM data flow
architecture [20] to verify the performance model and the use of dummy
transitions and control places for transformation of algorithms.

Dummy transitions and control places are implemented as active
transitions of zero process time and active places respectively. Read
and write times for the transitions in the experiments are assumed to
be those measured in [20]. The largest process time among the
transitions of the test algorithm is kept at least ten times higher
than read or write times for maintaining algorithms in the large-grain
level. The performance model is verified as experimental time

performances are close to theoretical time performances (within 4.4%

for TBIO and within 9.8% for TBO). The use of dumy transitions for
making parallel path circuits insignificant is verified in Test 1.
The TBO of the transformed AMG in Test 1 is determined by the
time/token ratio of the largest process circuit (experimental TBO is
6.15% more). A control place and a dummy transition together in Test
5 have reduced the total resource requirement from 3 to 2 while
maintaining the change in TBO within 3%. The larger difference
between the experimental and theoretical results compared to the
simulation can be attributed mainly to two reasons. First,
implementing a dummy transition as an active transition has a much
greater effect in the testbed. The dummy transition requires read and
write times in the experiments and hence, requires a resource for a
considerable amount of time contrary to the assumption. Second, as
pointed out in [20], Ethernet cannot implement concurrent read or
write operations. This fact is not taken into account in the
measurement of read and write times. The experimental results suggest
that a better method of implementing a dunmy transition and a more
accurate communication model for read and write times are necessary.
There are several topics that can be the subject of future
research. On the theoretical side, the following problems need
attention. In order to properly decompose an algorithm, a specific
definition of large granularity is needed corresponding to the
comminication time of an ATAMM data flow architecture. The first step
is to develop a general and more accurate model for read and write
times. The use of dummy transitions of finite time, control places
with initial tokens, and predefined tokens in performance improvement

and reduction of resource requirements needs to be explored.

151

152

Experiments and simulations have shown that the proper input data
injection interval is slightly higher than the predicted value. This
observation and the possibility of slight variation in transition
times suggest that automatic injection control may be necessary.
Execution of multiple AMG's or AMG's with multiple input and output
transitions provide a complex, but interesting, topic of future
research. Finally, the performance of algorithms with conditional
data flow need to be analyzed. On the implementation side, realizing
dummy transitions as buffers in the functional unit or graph manager,
a better technique for measuring communication times, a fully
automated ATAMM operating point design procedure, and transformations
of algorithms by dummy transitions and control places in real time are

useful topics for future research.

10.

11.

12.

LIST OF REFERENCES

J. W. Stoughton and R. R. Mielke, "petri-Net Model for Concurrent
Processing of Camplex Algorithms," Proceedings of Govermment
Microcircuit Applications Conference, San Diego, CA, November
1986.

R. R. Mielke, John W. Stoughton, and Sukhamoy Som, "™Modeling and
Performance Bounds for Concurrent Processing," Proceedings of the
8th International Conference on Distributed Computing Systems,
San Jose, CA, June 1988.

J. Tiberchien, New Computer Architectures, Academic Press,
London, 1984.

C. Petri, "Kommunikation mit Automaten,™ Ph.D. Dissertation,
University of Bonn, Bonn, West Germany, 1962.

A. Holt and F. Commoner, Events and Conditions, Applied Data
Research, NY, 1970.

J. L. Peterson, Petri Net Theory and the Modeling of Systems,
FEnglewood Cliffs, NJ, Prentice Hall, 1981.

Tadao Murata, "Synthesis of Decision-Free Concurrent Systems
for Prescribed Resources and Performance," IEEE Transactions on
Software Engineering, pp. 525-530, November 1980.

T. Murata and J. Koh, "Reduction and Expansion of Live and Safe

Marked Graphs," IEEE Transactions on Circuits and Systems, vol.
CAS-27, pp. 68-70, January 1980.

T. Agerwala and Arvind, "Data Flow Systems," Computer, pp. 10-13,
February 1982.

Tadao Murata, "Relevance of Network Theory to Models of
Distributed/Parallel Processing," Journal of Franklin Institute,
pp- 41-49, 1980.

R. R. Mielke, John W. Stoughton, and Sukhamoy Som, "Modeling and
Optimum Time Performance for Concurrent Processing," NASA
Contractor Report, Grant NAG1-683, August 1988.

M. Granski, I. Koren, and G. Silberman, "The Effect of Operation
Scheduling on the Performance of a Data Flow Computer, " IEFE
Transactions on Computers, vol. 36, pp. 1019-1029, September
1987.

153

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25,

26.

Tadao Murata, "Circuit Theoretic Analysis and Synthesis of Marked

Graphs," IEEE Transactions on Circuits and Systems, vol. 24, pp.

400-405, July 1977.

E. G. Coffman, Computer and Job-Shop Scheduling Theory, pp.
190-194, John Wiley & Sons, NY, 1976.

E. G. Coffman, Jr. and P. J. Denning, Operating System Theory,
Prentice-Hall, Inc., NJ, 1973.

K. G. Lockyer, An Introduction to Critical Path Analysis,

Pitman Publishing Limited, London, 1969.

J. J. Moder and C. R. Philips, Project Management with CPM and

PERT, pp. 63-83, Van Nostrand Reinhold, NY, 1964.

T. Murata, "Modeling and Analysis of Concurrent Systems, "

Handbook of Software Engineering, C. Vick and C. Ramamoorthy

Editors, pp. 39-63, Van Nostrand Reinhold, 1984.

Dennis B. Gannon and John Van Rosendale, "On the Impact of
Communication Complexity on Design of Parallel Numerical

Algorithms," IEEE Transactions on Computers, vol. 33, pp.

1180-1191, December 1984.

W. R. Tymchyshyn, "ATAMM Multicomputer System Design," Master's
Thesis, 0Old Dominion University, Norfolk, VA, August 1988.

R. Obando, "Software Tools for Performance Evaluation of
Concurrent Processing," Master's Thesis, 0ld Dominion
University, Norfolk, VA, August 1987.

R. Agrawal and H. V. Jagadish, "Partitioning Techniques for

large-Grained Parallelism," IEEE Transactions on Computers,
vol. 37, pp. 1627-1634, December 1988.

S. H. Bokhari, "Partitioning Problems in Parallel, Pipelined, and

Distributed Computing," IEEE Transactions on Computers, vol. 37,
PpP. 48-57, January 1988.

Z. Cvetanovic, "The Effect of Problem Partitioning, Allocation,
and Granularity on the Performance of Multiple-Processor

Systems," IEEE Transactions on Computers, vol. 36, pp. 421-432,

April 1987.

R. Johnsonbaugh and T. Murata, "Additional Methods for Reduction
and Expansion of Marked Graphs," IEEE Transactions on Circuits
and Systems, vol. CAS-28, pp. 1009-1014, October 1981.

Dan I. Moldovan and Jose A. B. Fortes, "Partitioning and Mapping
Algorithms into Fixed Size Systolic Arrays," IEEE Transactions on
Computers, vol. C-35, pp. 1-12, January 1986.

27.

28.

29'

30.

31.

32.

33.

34.

35.

36.

C. V. Ramamoorthy and Gary S. Ho, "Performance Evaluation of
Asynchronous Concurrent Systems Using Petri Nets," IEEE

Transactions on Software Engineering, vol. 6, pp. 440-449,
September 1980.

S. Seshu and M. Reed, Linear Graphs and Electrical Networks,

Addison-Wesley Publishing Co., Inc, 1961.

M. Sowa and T. Murata, "A Data Flow Computer Architecture with
Program and Token Memories," IEEE Transactions on Computers, pp.
940-948, November 1986.

V. Srini, "An Architectural Comparison of Dataflow Systems,"
Computer, pp. 68-88, March 1986.

J. W. Stoughton and R. R. Mielke, "Petri Net Model for Analysis
of Concurrently Processed Complex Algorithms," Proceedings of

Southeastcon Conference, March 1986.

J. W. Stoughton and R. R. Mielke, "Strategies for Concurrent
Processing of Complex Algorithms," Proceedings of Workshop on

Future Directions in Computer Architecture and Software, Army

Research Office, May 1986.

M. N. S. Swamy and K. Thulasiraman, Graphs, Networks, and
Algorithms, John Wiley & Sons Publication, NY, 1981.

D. F. Vrsalovic, D. P. Siewiorek, Z. Z. Segall, and E. F.
Gehringer, "Performance Prediction and Calibration for a Class of
Multiprocessors," IEEE Transactions on Computers, vol. 37, pp.

1353-1365, November 1988.

P. M. Rogge, The Architecture of Pipelined Computers, Advanced
Computer Science Series, McGraw-Hill, NY, 1981.

H. Tokuda, C. W. Mercer, Y. Ishikawa, T. E. Marchok, "Priority
Inversions in Real-Time Communication," Proceedings of the Real-
Time Systems Symposium, Santa Monica, California, December 5-7,
1989.

155

APPENDIX

This appendix is an excerpt from [11]. The ATAMM model is
studied analytically to determine important graph operating
characteristics. First, a state description which expresses the next
graph marking as a function of the present marking and a vector
indicating which transition is to be fired is developed. Then the
marked graph properties of reachability, liveness, and safeness are
considered for the (MG. Two excellent papers by Murata [13, 18] on
properties of marked graphs are the sources for much of the material
presented in this appendix.

Let G be a marked graph consisting of m places and n
transitions. The m-vector M, denotes the marking vector for G
resulting from the firing of some sequence of k transitions. The
following two definitions are necessary to develop the state
description of the Q(MG.

Definition A.1: Complete Incidence Matrix. The complete incidence
matrix for a marked graph G is the (n x m) matrix A = [aij] having
rows corresponding to transitions and columns corresponding to places

and where
ajy = | +1 (-1) ({if place j is incident at transition i

| and directed out of (into) the transition)

| O if place j is not incident at transition j.

156

157

Definition A.2: FEl Firing Vector. An elementary firing
vector uj is an n-vector having all zero entries except for the
ith component, which is 1 denoting that transition i is the k™
transition to fire in some transition firing sequence.

To gain insight to the state equation description, it is helpful
to consider the firing of transition k. If ap; = -1 (+1), place i
is an input (output) place to transition k. Therefore, transition k
is enabled if M(i) = 1 for each input place. When transition k fires,
one token is removed from each input place and one token is added to
each output place. These cbservations lead to the following next
state description for a marked graph.
Property A.1: Next State Description. For a marked graph G with
present marking vector M,_, and elementary firing vector u, the

next marking vector is given by

- T
qu = Mk_l + A uk.

The next state description can be used to express the graph
marking resulting from the application of sequences of elementary
firing vectors. This is done in the next definition and property.

Definition A.3: Firing Count Vector. Iet (uj, u,...,Ug) be a

sequence of elementary firing vectors taking a marked graph G from an
initial marking M, to a destination marking My. The firing count

vector x4 for this firing sequence is defined by

Pro A.2: State Equation Description. For a marked graph G with
initial marking vector Mgy, the marking vector resulting from the
application of an elementary firing vector sequence

(Uy, uy,...,uy) is given by
Mg = Mo + Alxg.

Using the state description of a marked graph as a basis, the
property of reachability is investigated. Necessary and sufficient
conditions for a (MG marking vector to be reachable from an initial
marking are established, and it is shown that the number of tokens
contained in any directed circuit of the (MG is invariant under
transition firings.

Definition A.4: Reachability. A marking My is reachable from an
initial marking M, if there exists a sequence of elementary firing
vectors that transforms Mo to My.

The following definition is required to state the reachability
conditions for a OMG.

Definition A.5: Fundamental Circuit Matrix. ILet T be a tree of a

connected marked graph G. The set of (m-nt+l) circuits, each uniquely
formed by appending one cotree edge to the tree, is called the set of
fundamental circuits of G for tree T [28]. The fundamental circuit
matrix for G for tree T is the (m-n+l1) x (m) matrix Be = [bij]

having rows corresponding to fundamental circuits and columns
corresponding to places, and where bij is determined by the rules as
described on the next page.

158

| +1(~1) if place j is contained in f-circuit i and the
| place and circuit directions agree (disagree)

le = |
| 0 if place j is not contained in f-circuit i.

Pro y A.3: Reachability in the aMG. In a computational marked
graph G, a marking My is reachable from an initial marking M, if

and only if BiMy = BgM,, where Bg is a fundamental circuit

matrix for G.

Proof. Tt is shown in [13] (Theorem 3) that the property is true for
marked graphs containing no token-free directed circuits. By the
construction rules for the (MG, directed circuits occur in exactly
four ways. First, each NMG consists of a directed circuit which
contains an initial marking token in the Process Ready place. Second,
a directed circuit is formed each time an NMG is linked to another
NMG. Since one of the two linking places contains an initial marking
token and both places are contained in the circuit, this circuit is
never token free. Third, directed circuits exist in the AMG
corresponding to interconnected feedforward paths in the algorithm
marked graph. Each such circuit contains one or more backward
directed control edge containing one initial marking token. Fourth,
directed circuits exist in the (MG corresponding to directed circuits
in algorithm marked graph. Each such circuit contains exactly one
forward directed edge containing one initial marking token which
represents initial condition data. Therefore, the (MG contains no

token-free directed circuits and the property follows.

159

160

As a direct consequence of the reachability property of the a4G,
it can be shown that the number of tokens in any directed circuit is
constant, This characteristic ig stated as Property A.4.

Property A.4: Token Count Invariance. In a (MG, the number of tokens
contained in a directed circuit is invariant under transition firing.
Proof. Consider a directed circuit C of a (MG. The entries in the
row of a circuit matrix B corresponding to C are +1 in columns
representing edges in C and are Q otherwise. If M is a marking
vector, the component of BM corresponding to C is equal to the number
of tokens in directed circuit C marking M. Therefore, if My is any
marking reachable from an initial marking My, it follows from
Property A.3 that By = BMy. That is, the number of tokens in
directed circuit C under initial marking My is equal to the number

of tokens under any marking My reachable from My- This completes

the proof.

Next, liveness and a closely related property called consistency
are considered. It is shown that the OMG is live and consistent.
Definition A.6: Liveness. A marked graph G is said to be live for a
marking F if, for all markings reachable from M, it is possible to
fire any transition of G by progressing through some transition firing
sequence.

Property A.5: Iiveness in the QMG. The computational marked graph is
live for all appropriate initial marking vectors.

Proof. It is shown in [18] (Property 2) that a marked graph G is live
for a marking M, if and only if, G contains no token-free directed

circuits in marking M. As stated in the proof of Property A.3, for

lel

all appropriate initial markings M,, the (MG contains no token-free
directed circuits. Therefore, the property follows.

Definition A.7: Consistency. A marked graph G is said to be
consistent if there exists a marking M and a transition firing

sequence S from M back to M such that every transition occurs at least

once in S.

in the MG. A connected computational

marked graph G is consistent. In addition, each transition of G
occurs an equal number of times in a firing sequence from a marking M
back to M.

Proof. From Property A.2, if a (MG is consistent then there exists a
marking My = My and a firing count vector xy > O such that

ATxd = 0. The converse is also true. The incidence matrix for a
marked graph G is an (n x m) matrix A. If G is connected, then it is
known [28] that the rank of A is n-1, and thus the null space of AT
has dimension one. It is observed that each row of AT has one (1),
one (-1), and all remaining terms are zero (0). Therefore, if CJ

denotes the jth column of AT, it follows that

Thus, there exists a vector x3 = [k k....k]T, k > 0, which
uniquely satisfies ATxd = 0. This completes the proof.

The final graph property considered in this section is safeness.
This property is first defined and then it is shown that a (MG is

safe.

162

Definition A.8: Safeness. A marked graph G is said to be safe for
marking M if, for all markings reachable from M, no place contains
more than one token.

Property A.7: Safeness in the QMG. The computational marked graph is
safe for all appropriate initial marking vectors.

Proof. By Property A.4, the token count for each directed circuit of
the (MG is invariant under transition firing. Therefore, it is
sufficient to show that each edge of the 4G belongs to at least one
directed circuit containing a single token. By the construction rules
for the (MG, all (MG edges can be classified into two groups NMG edges
and linking edges. NMG edges occur in groups of three and always form
a directed circuit containing one token. Linking edges occur in
pairs, one forward directed and one backward directed, and also form a
directed circuit with the forward directed edges of the NMG. One of
the linking edges, but not both, always contains one token while the
forward directed edges of the NMG contain no tokens. Therefore, each
edge of the MG is contained in a directed circuit with one token, and

the property follows.

Naonal A naulics, ang
Srace Agouastiahon

Report Documentation Page

1. Report No.
NASA CR-187450

3. Recipient’s Catalog No.

l 2. Government Accession No.
4. Title and Subtitle ' -

Strategies for Concurrent Processing of Complex
Algorithms in Data Driven Architectures

| s, Report Date

October 1990

6. Performing Organization Code

7. Author(s)
Sukhamoy Som, John W. Stoughton, and Roland R. Mielke

8. Performing Organization Report No.

8. Performing Organization Name and Address

Department of Electrical and Computer Engineering
Old Dominion University
Norfolk, Virginia 23529-0246

10. Work Unit No.

590-32-31-01

11. Contract or Grant No.

NAG1-683

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Langley Research Center
Hampton, Virginia 23665-5225

13. Type of Report and Period Covered
Contractor Report

14. Sponsoring Agency Code

15. Supplementary Notes

Langley Technical Monitor:
Final Report
May 1988 - August 1989

Paul J. Hayes

16. Abstract

in data flow architectures.

the design procedure.

This research report is concerned with performance modeling and performance
enhancement for periodic execution of large-grain, decision-free algorithms
Applications include real-time implementation of ‘
control and signal processing algorithms where performance is required to be highly
predictable. The mapping of algorithms onto the specified class of data flow
architectures is realized by a marked graph model called ATAMM (Algorithm To
Architecture Mapping Model). Performance measures and bounds are established.
&lgorithm transformation techniques are identified for performance enhancement and
reduction of resource (computing element) requirements.
procedure is described for generating operating conditions for predictable
performance both with and without resource constraints.
used to test and validate the performance prediction by the design procedure.
Experiments on a three resource testbed provide verification of the ATAMM model and

A systematic design

An ATAMM simulator is

17. Key Words (Suggested by Author(s))

Data flow computers

Algorithm to architecture mapping
Petri net

Control and signal processing

18. Distribution Statement

UNCLASSIFIED - UNLIMITED
Subject Category 33

18. Security Classif. (of thig report)

Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of pages 22. Price

177 A09

NASA FORM 1626 OCT g6

